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Introduction
Inverse planning is at the heart of prostate Volumetric Modulated Arc Therapy (VMAT) treatment procedure
and critically determines its level of success. As practiced now, the capacity of VMAT is greatly underutilized
because of inferior computing performance of existing optimization methods. An alternative mathematical
approach that improves both the efficiency and the efficacy is needed and is the center of this research.
We propose to develop a new innovative inverse planning tool, based on the novel idea of superiorization,
to replace the classical constrained optimization approaches employed in clinics today for prostate VMAT
cases.

Towards this goal, year 1 of the training award focused on formulating the VMAT problem as a con-
strained superiorization problem and on the development of a framework of fast converging inverse planning
algorithms. The new approach was then implemented, tested and evaluated on a previously treated prostate
cancer case where initial results were obtained. In year 2, the work concentrated on developing further the
modality assumed for superiorization when applied to the inverse planning in radiation therapy. Further, the
work was implemented and compared with the previous developed method. Towards the overarching goal
of the award we expanded the superiorization framework to other applications, such as proton imaging and
therapy, to help with the same kind of computational relief that is needed in these types of applications.

Body
1. Research Accomplishments

SOW Aim 1: Develop algorithms for inverse planning using superiorization techniques
for prostate VMAT

Meeting the goal outlined in the SOW aim 1, we have studied the problem of inverse planning for prostate
VMAT and developed a framework of algorithms using the superiorization methodology that is specifically
tailored to this application. We first defined the problem mathematically by reformulating it as a linear
feasibility problem (instead of a minimization problem) and suggested a solution to solve it using the su-
periorization methodology. In developing the tools, we have also generalized the approach to include other
medical physics applications, and provided conditions that are simple to meet both in theory and in prac-
tice. Our claims were proved mathematically and the results were submitted to three journal (archival)
publications [2, 4, 11].

Task 1: Formulating the VMAT treatment planning as a constrained superiorization problem

Our approach to a VMAT treatment planning started by studying the current mathematical models used
for this application. Since the superiorization methodology requires a different mathematical formulation,
the first step was to model the problem accordingly.

Consider the system of equations
Ax = d, (1)

where A is the J × I dose matrix that maps any intensity of beamlets vector x = (xi)I
i=1 ∈ RI onto a dose in

voxels vector d = (dj)J
j=1 ∈ RJ . Here I is the total number of beamlets and J is the total number of voxels.
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The minimization problem can then be formulated as

minimize
∑S

s=1 λs

∥∥Asx− d(s)

∥∥2

subject to x ≥ 0,
(2)

where the index s stands for different structures, As is the submatrix of A related to structure s and d(s) is
the subvector of d related to structure s, respectively, and λs is the importance factor associated with the
sth structure which is decided by the planner. There is an assumption that x is achievable using apertures
(aperture constraints).

Assume that we have S structures, for s = 1, 2, . . . , S, (including the complement of all identified struc-
tures), and denote by Os the set of indices of voxels that belong to the sth structure, such that

Os = {js,1, js,2, . . . js,m(s)} (3)

where m(s) is the number of voxels in this structure. Then the system matrix A can be partitioned into
blocks

A =


A1

A2

...
AS

 (4)

so that a submatrix As will contain the rows from A whose indices appear in Os, (similarly, let d(s) be the
subvector of d whose component indices appear in Os) and then the system becomes

A1

A2

...
AS

x =


d(1)

d(2)

...
d(S)

 . (5)

An optimization method aims at satisfying the system (1) (equivalently (5)) while minimizing a given ob-
jective function.

Reformulating the problem as a constrained superiorization problem: We suggest the follow-
ing modifications to the above modality. Replace the prescription method that gives rise to the system
Ax = d in (1) by a more flexible one in which we ask the planner to provide lower- and upper- dose bounds
vectors, d and d, respectively, on all voxels in all structures, and instead of (2) we aim at solving the following
linear feasibility problem

d ≤ Ax ≤ d. (6)

By transforming the problem of (1) into a linear feasibility problem of the form (6), we allow many iterative
projection method to derive a solution. This enables a formulation for the superiorization methodology to be
applied to VMAT inverse planning problem since many of these algorithms are also perturbation resilient.
Specifically, methods that belong to the two classes of projection methods, String Averaging Projection
(SAP) and Block-Iterative Projection (BIP) methods, can be applied towards solving this formulation and
achieve finding a superior solution in addition to satisfying the feasibility constraints (see [1, 3]). That is, an
x obtainable by a projection method alone will be an intensity of beamlets vector trying to solve (6), while
using a projection method that is also perturbation resilient allows for obtaining an x that solves (6) but
also provides a solution that is superior with respect to an objective function.
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The solution vector x of the beamlet intensities that results from the superiorization approach will then
be evaluated. Tools such as dose volume histograms (DVHs) will help assess conformality to the prostate
(the target) and to the organs at risk (OAR). These will be compared against what is recommended by
a physician in the clinic and governed by the specifications of the Radiation Treatment Oncology Group
(RTOG) protocol for prostate cancer patients [5].

The adaptation to our model based on the RTOG protocol is as follows: Given a structure s that is an
OAR, we define d(s) to be the upper-bound subvector of the prescribed dose

d(s) ≡ d(s), (7)

and define d(s) to be a lower-bound subvector for any target structure s

d(s) ≡ d(s). (8)

This allows the constraints in (6) to be written as

0 ≤ Asx ≤ d(s), (9)

for an OAR structure s and as
d(s) ≤ Asx ≤ e(s), (10)

for a target structure s, where e(s) is a clinically-specified upper-bound subvector for the target.
In assessing the solution provided by the superiorization method, if the acceptance criteria is not met,

then a refined selection of d and d will be provided and the process will repeat until a superior feasible
solution is found (this step is identical to how it is done in the clinic today).

Task 2: Development of a framework for fast converging inverse planning superiorization techniques
And
Task 7: Investigate the underlying principles and put their concept on a firm mathematical ground

In developing a framework for fast converging inverse planning superiorization techniques we first identified
several problems that currently exist in optimization methods. In classical optimization it is assumed that
there is a constraints set C and the task is to find an x ∈ C for which φ(x) is minimal. Problems with
this approach are the following: (1) The constraints may not be consistent and so C could be empty and
the optimization task as stated would not have a solution. (2) Iterative methods of classical constrained
optimization typically converge to a solution only in the limit. In practice some stopping rule is applied to
terminate the process and the actual output at that time may not be in C and, even if it is in C, it is most
unlikely to be a minimizer of φ over C.

Both problems were addressed in the newly developed superiorization framework. Mathematical defini-
tions and conditions were introduced and were theoretically proven. The new foundations include two new
notions of constraints-compatibility and strong perturbation resiliency. The new concepts allow to take into
the modality the infeasibility and practical convergence problems that exist in optimization methods. More
specifically, in the superiorization model we suggested to replace the constraints set C by a nonnegative
real-valued function Pr that serves as an indicator of how incompatible a given x is with the constraints.
Then the merit of an actual output of an algorithm is given by the smallness of the two numbers Pr(x) and
φ(x). Roughly, if an iterative algorithm produces an output x, then its superiorized version will produce an
output x′ for which Pr(x′) is not larger then Pr(x), but (in general) φ(x′) is much smaller than φ(x).
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In addition to the theoretical developments of superiorization, a practical and systematic way was devel-
oped to turn any iterative algorithm that solves a feasibility problem into an algorithm that does superior-
ization. For an iterative algorithm P and for any optimization criterion φ for which we know how to produce
nonascending vectors (see definition p. 5536 in [4]), the following pseudocode automatically takes P and pro-
duces a version of P that is superiorized for φ (exact details of the procedure can be found on page 5537 in [4]):

Superiorized Version of the Basic Algorithm

1. set k = 0

2. set yk = y0

3. set ` = −1

4. repeat

5. set n = 0

6. set yk,n = yk

7. while n<N

8. set vk,n to be a nonascending vector for φ at yk,n

9. set loop=true

10. while loop

11. set ` = `+ 1

12. set βk,n = η`

13. set z = yk,n + βk,nv
k,n

14. if φ (z)≤φ
(
yk
)

then

15. set n=n+ 1

16. set yk,n=z

17. set loop = false

18. set yk+1=AC

(
yk,N

)
19. set k = k + 1

By bridging the gap that typically exist between theory and practice in the new model, superiorization was
made more general. That is, the framework fit many other medical physics application, not just VMAT
or radiation therapy inverse planning type applications. All the results mentioned briefly here have been
published in an archival journal publication in the journal of Medical Physics [4], see the Appendix Section
for the full manuscript.

Another accomplishment related to this task touches on an additional aspect of superiorization. Con-
strained optimization problems that arise in real-life applications are often huge (such an example is the
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Total V ariation value Time (seconds)
projected subgradient method 919 2217

superiorization method 873 102

Table 1: Performance comparison of the projected subgradient method and the superiorization method with
Total Variation as the objective function.

VMAT problem). It can then happen that the traditional algorithms for constrained optimization require
computational resources that are not easily available and, even if they are, the length of time needed to
produce an acceptable output is too long to be practicable. As part of our goal to show that superioriza-
tion can handle large size problems efficiently, we have illustrated that the computational requirements of a
superiorized algorithm can be significantly less than that of a traditional optimization algorithm, by report-
ing on a comparison of superiorization with the projected subgradient method (PSM), which is a standard
method of classical optimization. Table 1 summarizes the comparison we have performed between the PSM
method and the superiorization method. In our experiment, we set the the stopping rule to guarantee that
the output of the superiorization method is at least as constraints-compatible as the output of the PSM.
The superiorization method showed clearly superior efficacy to the PSM: it obtained a result with a lower
objective function value (TV) at less than one twentieth of the computational cost.

The complete report that summarizes this work was published in the Journal of Optimization Theory
and Applications [2]. It is attached to this report in the Appendix Section.

Task 3: Implementation and testing of the developed algorithms
And
Task 5: Early-stage algorithm testing on a prostate cases
And
Task 6: Testing on clinical data

In these tasks we wanted to assess our proposed approach to using superiorization on a realistically yet
simple test case. The goal set here is two-fold: the first is to show that the developed method can produce
good results and the second is to obtain a clear indication if the nonacsending-type superiorization tech-
niques should be replaced with alternative derivative-free approaches (see, SOW Task 4: the development of
alternative derivative-free techniques to superiorization).

We proposed to use as a test case in this task a previously treated intensity modulated radiation therapy
(IMRT) prostate patient case. As was explained in the research proposal, the VMAT technique delivers
an IMRT type treatment in a single arc. Getting good results on a previously treated IMRT case would
establish a level of confidence that the superiorization method can deliver superior results by referencing a
previously treated clinical case. The modality that was given above (in Task 1) is identical for these two
radiation therapy techniques (i.e., IMRT and VMAT); the difference lies in the size of the problem and
its level of complexity. Since superiorization was never tried with any type of radiation therapy treatment
planning it is important to provide such evidence on an actual clinical case. The mathematical model which
we have developed along with the theories and proofs of the superiorization methodology (in Task 2) fit both
problems. Satisfactory results will encourage us to continue develop the method as it is proposed in Tasks
1 and 2 and tailor it further more to the VMAT approach.

Algorithmic operator and objective function The framework that was developed is quite general for
many medical physics applications. With the modality of the superiorization approach in (6), a choice for
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Figure 1: Geometrical description of ART with inequalities constraints

a projection operator that is perturbation resilient is needed as well as a choice of an objective function.
The algorithmic operator that was chosen for our implementation was the Algebraic Reconstruction Tech-
nique (ART) for inequalities constraints. This operator was proven to be perturbation-resilient in [1]. The
constraints of the system in (6) can be thought of as hyperslabs. The algorithm projects the current point
according to its location in relation to the two hyperplanes that form a hyperslab. A geometrical descrip-
tion to this feasibility problem is provided in Figure 1. The analytical formulation associated with it is the
following:

xk+1 =


xk, if ci ≤

〈
ai, xk

〉
≤ di (case A),

xk + λk
di−〈ai,xk〉
‖ai‖2 ai, if di <

〈
ai, xk

〉
(case B),

xk + λk
ci−〈ai,xk〉
‖ai‖2 ai, if

〈
ai, xk

〉
< ci (case C).

(11)

The objective function used in our implementation was the total variation (TV) functional of the beamlet
intensity vector x, see Eq. (12) in [4] and the discussion in the research proposal under Specific Aim 1
regarding this choice. We denote herein the superiorization algorithm that uses TV as the objective function
by TV-Superiorization.

Prostate patient data and planning The data for testing the approach were of a previously treated
prostate cancer patient. A seven field radiation treatment IMRT plan was created. The organs that were
included in the plan were the prostate (target), rectum, bladder, small bowel (OARs) and the full body.
Figure 2 shows the CT and the contours of these structures. Using RTOG 0815 [5] we set in Table 2 the
acceptance criteria for the implemented TV-Superiorization algorithm.
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Figure 2: CT of the prostate patient case used in the experiment.

Organ Target? Acceptance criteria
I. Prostate Yes 1. Dose will be normalized s.t. 98% of the PTV receives the

prescription dose. (Prescribed dose to PTV is 79.2 Gy.)
2. The maximum allowable dose within the PTV is 107%
of the prescribed dose (i.e., maximum allowed dose is 84.744 Gy).
3. The minimum allowable dose within the PTV should be ≥95%
of the prescribed dose (i.e., 100% of the dose should be ≥75.24 Gy.

II. Rectum No 1. No more than 15% volume receives dose that exceeds 75 Gy
2. No more than 25% volume receives dose that exceeds 70 Gy
3. No more than 35% volume receives dose that exceeds 65 Gy
4. No more than 50% volume receives dose that exceeds 60 Gy

III. Bladder No 1. No more than 15% volume receives dose that exceeds 80 Gy
2. No more than 25% volume receives dose that exceeds 75 Gy
3. No more than 35% volume receives dose that exceeds 70 Gy
4. No more than 50% volume receives dose that exceeds 65 Gy

IV. Small Bowel No 1. Upper bound is set to 52 Gy.

Table 2: Acceptance criteria for prostate patients according to RTOG 0815 [5].
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Figure 3: DVH plots for a prostate case experiment with and without TV-Superiorization.

Results We compared the results when superiorization was present versus when it was not. The TV-
Superiorization algorithm was able to meet the RTOG acceptance criteria while the one without TV-
Superiorization was not. Moreover, the TV-Superiorization algorithm was able to achieve this in a relatively
short amount time of only 12 iterations. Figure 3 shows the DVH curves of the two algorithms side-by-side.
The solid lines represent the TV-Superiorization algorithm and the dashed lines represent the algorithm
without Superiorization. The corresponding numbers for assessing the acceptance criteria are specified in
Table 3. As can be seen, the criteria that is based on the RTOG protocol [5] was fully met by the superior-
ization method for this prostate case.

Task 4: Alternative approach
The goal of this task was modified to reflect the success of tasks 3 and 5. Instead, we developed a different

modality to be tested against the original one proposed in Task 1, but also one that is directly inherited
from the mathematical foundation laid out in task 7. In the new proposed approach we aimed at removing
the linear two-sided inequalities feasibility model in favor of a least-squares model approach.

Quadratic Programming Superiorization (QPS)
Consider the system of equations as in (1) above, i.e., Ax = d, where A is the dose matrix mapping

the intensity of beamlets vector x to the dose in voxels vector d, where the total number of beamlets is I
the total number of voxels is J . Further, in this new work we assume the notation and fundamentals that
were used in equation (1)-(5) (not copied here). In the new formulation we propose the following changes:
We suggest to use the famous least-squares model of (2) and not our previously suggested model of linear

11



Organ Target? Criterion TV-Superiorization
I. Prostate Yes %vol > 79.2 Gy = 98 %vol > 79.2 Gy = 98

%vol > 84.744 Gy = 0 %vol > 84.6 Gy = 0
%vol > 75.24 Gy = 100 %vol > 75.24 Gy = 100

II. Rectum No %vol > 75 Gy ≤ 15 %vol > 75 Gy ≤ 12.7
%vol > 70 Gy ≤ 25 %vol > 70 Gy ≤ 18.6
%vol > 65 Gy ≤ 35 %vol > 65 Gy ≤ 25.8
%vol > 60 Gy ≤ 50 %vol > 60 Gy ≤ 34.5

III. Bladder No %vol > 80 Gy ≤ 15 %vol > 80 Gy ≤ 2.2
%vol > 75 Gy ≤ 25 %vol > 75 Gy ≤ 4.9
%vol > 70 Gy ≤ 35 %vol > 70 Gy ≤ 6.8
%vol > 65 Gy ≤ 50 %vol > 65 Gy ≤ 8.7

IV. Small Bowel No %vol > 52 Gy ≤ 0 %vol > 1.4 Gy ≤ 0

Table 3: Results of the criteria for the TV-Superiorization algorithm.

interval inequalities above. It is also typical to include a second term that will be minimized with the
original objective function. Such a term (called a regularization term) carry the means for incorporating
total variation, i.e.,

minimize
∑S

s=1 λs

∥∥Asx− d(s)

∥∥2 + βTV (x)
subject to x ≥ 0,

(12)

In this work we will not regularize the objective function but follow the superiorization framework as laid
out in the pseudocode of the Superiorized Version of the Basic Algorithm (SVoBA). Instead we propose to
perform TV superiorization on top of a quadratic programming (QP) algorithm that is intended for the
least-squares model. In this way φ will be the TV function. Further, the “Basic Algorithm” in line 18 of
the SVoBA will be the QP algorithm and not the feasibility-seeking algorithm that was used in the previous
section. We next describe in detail the QP algorithm.

The QP algorithm
The QP algorithm was originally designed to solve (2) iteratively. In our framework, whenever line 18

of the SVoBA is called for the algorithmic operator AC we design it such that it will be an iteration of
the QP algorithm. There are many QP algorithms for solving (2). We decided to implement the Projected
Landweber method [6, 7] since it fits the superiorization framework (more details below). Let us denote the
quadratic objective function of (2) by

F (x) =
1
2

S∑
s=1

λs

∥∥Asx− d(s)

∥∥2
. (13)

The gradient of F can then be calculated

∇F (x) =
S∑

s=1

λsA
T
s

(
Asx− d(s)

)
(14)

where AT
s is the transpose matrix of the submatrix As. In our pseudocode of SVoBA, when line 18 is reached,

in the algorithm yk,N should treat it as the xk in the Landweber Algorithm and calculate from it the next
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The projected Landweber method
Initialization: x0 ∈ RI is arbitrary,
Iterative step: Given the current iterate xk calculate the next iterate xk+1 by

xk+1 = PΩ(xk − τk∇F (xk)) (15)

where Ω = {x ∈ RI | xi ≥ 0 for all i = 1, 2, . . . , I} is the nonnegative orthant of RI and PΩ is the projection
onto it, namely, for any point z ∈ RI

(PΩ(z))i = max(zi, 0) =
{
zi, if zi ≥ 0,
0 if zi < 0. (16)

The stepsizes: The stepsizes τk should be chosen to be either diminishing steps τk = 0.1√
k

or square

summable steps τk = 1
k
.

Organ Target? Criterion QP-Superiorization
I. Prostate Yes %vol > 78 Gy = 95 %vol > 78 Gy = 95

%vol > 84.744 Gy = 0 %vol > 84.70 Gy = 0
%vol > 75.24 Gy = 100 %vol > 76.02 Gy = 100

II. Rectum No %vol > 75 Gy ≤ 15 %vol > 75 Gy ≤ 2.4
%vol > 70 Gy ≤ 25 %vol > 70 Gy ≤ 3.1
%vol > 65 Gy ≤ 35 %vol > 65 Gy ≤ 3.6
%vol > 60 Gy ≤ 50 %vol > 60 Gy ≤ 6.4

III. Bladder No %vol > 80 Gy ≤ 15 %vol > 80 Gy ≤ 0
%vol > 75 Gy ≤ 25 %vol > 75 Gy ≤ 0.8
%vol > 70 Gy ≤ 35 %vol > 70 Gy ≤ 2.3
%vol > 65 Gy ≤ 50 %vol > 65 Gy ≤ 4.7

IV. Small Bowel No %vol > 52 Gy ≤ 0 %vol > 1.2 Gy ≤ 0

Table 4: Results of the criteria for the QP-Superiorization algorithm.

iterate according to (15), which, in turn, will be the yk+1 of line 18 of the SVoBA. The Projected Landweber
Method was proven to be perturbation resilient in [8].

Results:
We report here on the results obtained for the same data of a prostate patient (which we reported earlier

using the TV-Superiorization method). As can be seen from the Dose Volume Histogram and from the Table,
the algorithm was able to produce acceptable results and meet all the criteria. The number of iterations
that it needed to reach this result was 20.

Additional tasks that were completed by the PI during the duration of the award (not
included in the SOW):

• Implementation of the algorithms and code and its availability to the community: The mathematical
foundation behind superiorization will be available to the community in the package framework of
SNARK09 in the context of image reconstruction from projections. A paper that summarizes the work
was published in the journal of Computer Methods and programs in Biomedicine, see [9] for further
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Figure 4: DVH plots for the newly proposed Quadratic Programming Superiorization (QPS).
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details (also attached to the appendix).

• The PI participated in a collaborative effort to incorporate the method of superiorization into prostate
proton therapy and proton CT imaging techniques. The paper entitled: “200 MeV Proton Radiography
Studies with a Hand Phantom Using a Prototype Proton CT Scanner, IEEE Trans Med Imaging 2013”,
provides the reasoning behind proton CT and its usefulness for using protons to treat cancer as oppose
to photons. The acknowledgment section specifies the contribution of the PI and acknowledgment of
the grant, [10].

• The PI participated in the development and planning of an Intensity Modulated Proton Therapy
(IMpRT) inverse planning method which incorporates principles of the work developed during this
award. The attached IMpRT proposal summarizes future aspect of this collaboration and continuation
effort among multiple institutes and how this may enrich the career path of the PI.

Training Accomplishments

Task 8: Seminar, lectures and meetings

Task 9: Research training

Task 10: Clinical training

During the duration of the training award the PI had attended regular meetings, seminars and journal
clubs with presentations on topics related to radiation therapy treatment planning. Other presentations of
visiting scholars and professionals were also available throughout the year and had enriched his knowledge
on the topic. The PI was trained in the clinic to operate the Eclipse and Aria system stations for treatment
planning available at Stanford Cancer Center (Eclipse and Aria are commercial tools for treatment planning
developed by Varian Medical Systems). He collaborated with radiation oncologists, radiation therapists,
physicists and dosimetrists and obtained first-hand the knowledge and experience of the process of prostate
radiation treatment planning.

Key Research Accomplishments
• Formulated the VMAT treatment planning as a constrained superiorization problem.

• Developed a framework for fast converging inverse planning superiorization techniques.

• Derived the necessary conditions of the superiorization framework for VMAT treatment planning

• Placed the newly developed concepts on a firm mathematical ground.

• Implemented and tested the new superiorization framework and showed good initial results.

• Developed implemented and tested a new modality based on Quadratic Programing and incorporated
it into the superiorization framework.

• Participated in additional collaborations for using the developed superiorization framework in other
applications including: image reconstruction, proton CT and proton radiation therapy.

• Trained in treating prostate cancer as it is done in the clinic today.

• Invited speaker to international meetings and workshops.
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Reportable Outcomes
• Four journal publications were submitted. Three appeared and the fourth was accepted:

1. G.T. Herman, E. Garduño, R. Davidi and Y. Censor, Superiorization: An optimization heuristic
for medical physics, Medical Physics 39 (2012), 5532–5546.

2. Y. Censor, R. Davidi, G.T. Herman, R.W. Schulte and L. Tetruashvili, Projected subgradi-
ent minimization versus superiorization, Journal of Optimization Theory and Applications, DOI
10.1007/s10957-013-0408-3, 2013.

3. J. Klukowska, R. Davidi, and G.T. Herman: SNARK09 - A software package for the reconstruction
of 2D images from 1D projections, Computer Methods and Programs in Biomedicine, 110:424-440,
2013.

4. R. Davidi, Y. Censor, R.W. Schulte, S. Geneser, and L. Xing. Feasibility-Seeking and Superior-
ization Algorithms Applied to Inverse Treatment Planning in Radiation Therapy, Contemporary
Mathematics, (to appear), 2014.

• The above work has been accepted for presentation at the joint workshop sponsored by the American
Society for Therapeutic Radiology and Oncology (ASTRO), the National Cancer Institute (NCI) and
the American Association of Physicists in Medicine (AAPM) , June 13-14, 2013, National Institutes of
Health, Bethesda, MD, USA.

• The above work has been accepted for presentation at the workshop on Projection Methods: Theory
and Practice, June 19-21, 2013, Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern,
Germany.

• The above work has been accepted for presentation at the meeting on Projection Methods in Feasi-
bility, Superiorization and Optimization, December 19, 2013, Center for Mathematics and Scientific
Computation (CMSC) and the Caesarea Rothschild Institute (CRI) for Interdisciplinary Applications
of Computer Science at the University of Haifa, Mt. Carmel, Israel.

Conclusion
We were able to extend the superiorization methodology into a larger framework, one that is more realistic
from the point of view of the application at hand. By taking into account the discrepancy that exist between
theory and practice and incorporate it into our model, we minimized potential issues that typically appear
when a theory is applied to a real-life application.

Superiorization was developed to be a general tool for medical physics applications. It is capable of
turning any iterative algorithm that tries to satisfy a set of constraints into one that is also capable of
superiorizing an objective function. The work that came out of this research can help other applications
that use optimization methods as the main tool. Examples include X-ray CT using image reconstruction
from projections, proton CT that uses superiorization as the iterative engine to superiorize an objective
function, and utilizing its eficacy for implementing fast converging techniques in proton radiation therapy.

Using the developed methodology, we tailored it specifically to solve the problem of IMRT and VMAT in
radiation therapy inverse planning. The initial results obtained on a realistic prostate case were satisfactory
and show good indication that superiorization works and can be applied to a radiation treatment planning
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problems. We further extended the framework to include quadratic programming and provided the means
to use superiorization using this approach.

Finally, we implemented, tested and evaluated our new framework on prostate cases. We performed a
thorough investigation as detailed in the SOW and reported in the literature and in meetings on our results.
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Purpose: To describe and mathematically validate the superiorization methodology, which is a re-
cently developed heuristic approach to optimization, and to discuss its applicability to medical physics
problem formulations that specify the desired solution (of physically given or otherwise obtained con-
straints) by an optimization criterion.
Methods: The superiorization methodology is presented as a heuristic solver for a large class of
constrained optimization problems. The constraints come from the desire to produce a solution that
is constraints-compatible, in the sense of meeting requirements provided by physically or otherwise
obtained constraints. The underlying idea is that many iterative algorithms for finding such a solution
are perturbation resilient in the sense that, even if certain kinds of changes are made at the end of each
iterative step, the algorithm still produces a constraints-compatible solution. This property is exploited
by using permitted changes to steer the algorithm to a solution that is not only constraints-compatible,
but is also desirable according to a specified optimization criterion. The approach is very general, it
is applicable to many iterative procedures and optimization criteria used in medical physics.
Results: The main practical contribution is a procedure for automatically producing from any given
iterative algorithm its superiorized version, which will supply solutions that are superior according
to a given optimization criterion. It is shown that if the original iterative algorithm satisfies certain
mathematical conditions, then the output of its superiorized version is guaranteed to be as constraints-
compatible as the output of the original algorithm, but it is superior to the latter according to the
optimization criterion. This intuitive description is made precise in the paper and the stated claims
are rigorously proved. Superiorization is illustrated on simulated computerized tomography data of
a head cross section and, in spite of its generality, superiorization is shown to be competitive to an
optimization algorithm that is specifically designed to minimize total variation.
Conclusions: The range of applicability of superiorization to constrained optimization problems is
very large. Its major utility is in the automatic nature of producing a superiorization algorithm from an
algorithm aimed at only constraints-compatibility; while nonheuristic (exact) approaches need to be
redesigned for a new optimization criterion. Thus superiorization provides a quick route to algorithms
for the practical solution of constrained optimization problems. © 2012 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4745566]

Key words: superiorization, constrained optimization, heuristic optimization, tomography, total
variation

I. INTRODUCTION

Optimization is a tool that is used in many areas of Medi-
cal Physics. Prime examples are radiation therapy treatment
planning and tomographic reconstruction, but there are others
such as image registration. Some well-cited classical publica-
tions on the topic are Refs. 1–12 and some recent articles are
Refs. 13–26.

In a typical medical physics application, one uses con-
strained optimization, where the constraints come from the

desire to produce a solution that is constraints-compatible, in
the sense of meeting the requirements provided by physically
or otherwise obtained constraints. In radiation therapy treat-
ment planning, the requirements are usually in the form of
constraints prescribed by the treatment planner on the doses
to be delivered at specific locations in the body. These doses
in turn depend on information provided by an imaging in-
strument, typically a magnetic resonance imaging (MRI) or
a computerized tomography (CT) scanner. In tomography, the
constraints come from the detector readings of the instrument.
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In such applications, it is typically the case that a large num-
ber of solutions would be considered good enough from the
point of view of being constraints-compatible; to a large ex-
tent, but not entirely, due to the fact that there is uncertainty
as to the exact nature of the constraints (for example, due to
noise in the data collection). In such a case, an optimization
criterion is introduced that helps us to distinguish the “better”
constraints-compatible solutions (for example, this criterion
could be the total dose to be delivered to the body, which may
vary quite a bit between radiation therapy treatment plans that
are compatible with the constraints on the doses delivered to
individual locations).

The superiorization methodology (see, for example,
Refs. 22 and 27–32) is a recently developed heuristic ap-
proach to optimization. The word heuristic is used here in
the sense that the process is not guaranteed to lead to an op-
timum according to the given criterion; approaches aimed at
processes that are guaranteed in that sense are usually referred
to as exact. Heuristic approaches have been found useful in
practical applications of optimization, mainly because they
are often computationally much less expensive than their ex-
act counterparts, but nevertheless provide solutions that are
appropriate for the application at hand.33–35

The underlying idea of the superiorization approach is the
following. In many applications there exists a computation-
ally efficient iterative algorithm that produces a constraints-
compatible solution for the given constraints. (An example
of this for radiation therapy treatment planning is reported
in Ref. 36, its clinical use is discussed in Ref. 15.) Fur-
thermore, often the algorithm is perturbation resilient in the
sense that, even if certain kinds of changes are made at
the end of each iterative step, the algorithm still produces
a constraints-compatible solution.27–30 This property is ex-
ploited in the superiorization approach by using such pertur-
bations to steer the algorithm to a solution that is not only
constraints-compatible, but is also desirable according to a
specified optimization criterion. The approach is very general,
it is applicable to many iterative procedures and optimization
criteria.

The current paper presents a major advance in the
practice and theory of superiorization. The previous
publications22,27–32 used the intuitive idea to present some su-
periorization algorithms, in this paper the reader will find a to-
tally automatic procedure that turns an iterative algorithm into
its superiorized version. This version will produce an output
that is as constraints-compatible as the output of the original
algorithm, but it is superior to that according to an optimiza-
tion criterion. This claim is mathematically shown to be true
for a very large class of iterative algorithms and for optimiza-
tion criteria in general, typical restrictions (such as convexity)
on the optimization criterion are not essential for the material
presented below. In order to make precise and validate this
broad claim, we present here a new theoretical framework.
The framework of Ref. 29 is a precursor of what we present
here, but it is a restricted one, since it assumes that the con-
straints can be all satisfied simultaneously, which is often false
in medical physics applications. There is no such restriction
in the presentation below.

The idea of designing algorithms that use interlacing steps
of two different kinds (in our case, one kind of steps aim at
constraints-compatibility and the other kind of steps aim at
improvement of the optimization criterion) is well-established
and, in fact, is made use of in many approaches that have
been proposed with exact constrained optimization in mind;
see, for example, the works of Helou Neto and De Pierro,37, 38

Nurminski,39 Combettes and co-workers,40, 41 Sidky and co-
workers,23, 42, 43 and Defrise and co-workers.44 However, none
of these approaches can do what can be done by the superi-
orization approach as presented below, namely, the automatic
production of a heuristic constrained optimization algorithm
from an iterative algorithm for constraints-compatibility. For
example, in Ref. 37 it is assumed (just as in the theory pre-
sented in our Ref. 29) that all the constraints can be satisfied
simultaneously.

A major motivator for the additional theory presented in
the current paper is to get rid of this assumption, which
is not reasonable when handling real problems of medical
physics. Motivated by similar considerations, Helou Neto and
De Pierro38 present an alternative approach that does not
require this unreasonable assumption. However, in order to
solve such a problem, they end up with iterative algorithms
of a particular form rather than having the generality of be-
ing able to turn any constraints-compatibility seeking algo-
rithm into a superiorized one capable of handling constrained
optimization. Also, the assumptions they have to make in
order to prove their convergence result (their Theorem 15)
indicate that their approach is applicable to a smaller class
of constrained optimization problems than the superioriza-
tion approach whose applicability seems to be more general.
However, for the mathematical purist, we point out that they
present an exact constrained optimization algorithm, while
superiorization is a heuristic approach. Whether this is rel-
evant to medical physics practice is not clear: exact algo-
rithms are not run forever, but are stopped according to some
stopping-rule, the relevant questions in comparing two algo-
rithms are the quality of the actual output and the computation
time needed to obtain it.

Ultimately, the quality of the outputs should be evaluated
by some figures of merit relevant to the medical task at hand.
An example of a careful study of this kind that involves su-
periorization is in Sec. 4.3 of Ref. 30, which reports on com-
paring in CT the efficacy of constrained optimization recon-
struction algorithms for the detection of low-contrast brain
tumors by using the method of statistical hypothesis testing
(which provides a P-value that indicates the significance by
which we can reject the null hypothesis that the two algo-
rithms are equally efficacious in favor of the alternative that
one is preferable). Such studies bundle together two things:
(i) the formulation of the constrained optimization task and
(ii) the performance of the algorithm in performing that task.
The first of these requires a translation of the medical aim into
a mathematical model, it is important that this model should
be appropriately chosen.

The superiorization approach is not about choosing this
model, it kicks in once the model is chosen and aims
at producing an output that is “good” according to the
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mathematical specifications of the constraints and of the
optimization criterion. Thus superiorization has been used
to compare the effects on the quality of the output in CT
when the optimization criterion is specified by total vari-
ation (TV) versus by entropy28 or versus by the �1-norm
of the Haar transform.32 However, the current paper is not
about discussing how to translate the underlying medical
physics task into a constrained optimization problem. For
our purposes here, we are assuming that the mathematical
model has been worked out and concentrate on the algo-
rithmic approach for solving the resulting constrained op-
timization problem. We claim that the evaluation of such
algorithms should not be based on the medical figures of
merit mentioned at the beginning of the previous paragraph,
but rather on their performance in solving the mathemat-
ical problem. If “good” solutions to the constrained opti-
mization problem are not medically efficacious, that indi-
cates that something is wrong with the mathematical model
and not that something is wrong with the algorithmic ap-
proach. For this reason, in this paper we will not carry out
a careful investigation of the medical efficacy of any algo-
rithm in the manner that we have done in Sec. 4.3 of Ref. 30,
but will restrict ourselves to a simple illustration of the per-
formance of the superiorization approach as compared to the
previously published algorithm of Ref. 42 that is aimed at per-
forming exact minimization.

Examples of such studies already exist. Superiorization
was compared in Ref. 27 with Algorithm 6 of Ref. 40 and in
Ref. 45 with the algorithm of Goldstein and Osher that they
refer to as TwIST (Ref. 46) with split Bregman47 as the sub-
step. In both cases the implementation was done by the pro-
posers of the algorithms. In these reported instances superi-
orization did well: the constraints-compatibility and the value
of the function to be minimized were very similar for the out-
puts produced by the algorithms being compared, but the su-
periorization algorithm produced its output four times faster
than the alternative. It would be unjustified to draw any gen-
eral conclusions on the mathematical performance and speed
of superiorization based on just a few experiments, but the
reported results are encouraging.

However, the main reason why we advocate superioriza-
tion is different from what is discussed above. The reason
why we claim it to be helpful in medical physics research
is that it has the potential of saving a lot of time and ef-
fort for the researcher. Let us consider a historical example.
Likelihood optimization using the iterative process of expec-
tation maximization (EM) (Ref. 48) gained immediate and
wide acceptance in the emission tomography community. It
was observed that irregular high amplitude patterns occurred
in the image with a large number of iterations, but it was
not until five years later that this problem was corrected49

by the use of a maximum a posteriority probability (MAP)
algorithm with a multivariate Gaussian prior. Had we had
at our disposal the superiorization approach, then the intro-
duction of an optimization criterion (Gaussian or other) into
the iterative EM process would have been a simple matter
and we would have saved the time and effort spent on de-
signing a special purpose algorithm for the MAP formula-

tion. A T V -superiorization of the EM algorithm is presented
in Ref. 50.

Even though our major claim for superiorization is that it
provides a quick route to algorithms for the practical solution
of constrained optimization problems, before leaving this in-
troduction let us bring up a question that has to do with the
performance of the resulting algorithms: Will superiorization
produce superior results to those produced by contemporary
MAP methods or is it faster than the better of such methods?
At this stage we have not yet developed the mathematical no-
tation to discuss this question in a rigorous manner, we return
to it in Subsection II.F.

In Sec. III, we present in detail the superiorization method-
ology. In Sec. III, we provide an illustrative example by re-
porting on reconstructions produced by algorithms applied to
simulated computerized tomography data of a head cross sec-
tion. In the final section, we discuss our results and present
our conclusions.

II. THE SUPERIORIZATION METHODOLOGY

II.A. Problem sets, proximity functions, and
ε-compatibility

Although optimization is often studied in a more general
context (such as in Hilbert or Banach spaces), in medical
physics we usually deal with a special case, where optimiza-
tion is performed in a Euclidean space RJ (the space of J-
dimensional vectors of real numbers, where J is a positive in-
teger). As often appropriate in practice, we further restrict the
domain of optimization to a nonempty subset � of RJ (such
as the non-negative orthant RJ

+ that consists of vectors all of
whose components are non-negative).

We now turn to formalizing the notion of being compatible
with given constraints, a notion that we have used informally
in Sec. I. In any application, there is a problem set T ; each
problem T ∈ T is essentially a description of the constraints
in that particular case. For example, for a tomographic
scanner, the problem of reconstruction for a particular patient
at a particular time is determined by the measurements taken
by the scanner for that patient at that time. The intuitive
notion of constraints-compatibility is formalized by the use
of a proximity function Pr on T such that, for every T ∈ T ,
PrT maps � into R+, the set of non-negative real numbers;
i.e., PrT : � → R+. Intuitively, we think of PrT (x) as an
indicator of how incompatible x is with the constraints of T.
For example, in tomography, PrT (x) should indicate by how
much a proposed reconstruction that is described by an x in
� violates the constraints of the problem T that are provided
by the measurements taken by the scanner. For example, if
we use b to denote the vector of estimated line integrals based
on the measurements obtained by the scanner and by A the
system matrix of the scanner, then a possible choice for the
proximity function is the norm-distance ‖b − Ax‖, which
we will use as an example in the discussions that follow. An
alternative legitimate choice for the proximity function is the
Kullback-Leibler distance KL(b, Ax), which is the negative
log-likelihood of a statistical model in tomography. The
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special case PrT (x) = 0 is interpreted by saying that x is
perfectly compatible with the constraints; due to the presence
of noise in practical applications, it is quite conceivable that
there is no x that is perfectly compatible with the constraints,
and we accept an x as constraints-compatible as long as the
value of PrT (x) is considered to be small enough to justify
that decision. Combining these two concepts leads to the
notion of a problem structure, which is a pair 〈T ,Pr〉, where
T is a nonempty problem set and Pr is a proximity function
on T . For a problem structure 〈T ,Pr〉, a problem T ∈ T , a
non-negative ε, and an x ∈ �, we say that x is ε-compatible
with T provided that PrT (x) ≤ ε.

As an example (whose applicability to tomographic re-
construction is illustrated in Sec. III), consider the problem
structure that arises from the desire to find non-negative so-
lutions of sequences of blocks of linear equations. Then the
appropriate choices are � = RJ

+ and the problem structure is
〈S, Res〉, where the problem set S is

S = {({(a1, b1), . . . , (a�1 , b�1 )}, . . . ,
{(a�1+...+�W−1+1,b�1+...+�W−1+1), . . . , (a�1+...+�W ,b�1+...+�W

)})|
W is a positive integer and,

for 1 ≤ w ≤ W, �w is a positive integer and,

for 1 ≤ i ≤ �1 + . . . + �W , ai ∈ RJ and bi ∈ R} (1)

and the proximity function Res on S is defined, for any
problem S = ({(a1, b1),. . . , (a�1 , b�1 )}, . . . , {(a�1+...+�W−1+1,

b�1+...+�W−1+1), . . . , (a�1+...+�W , b�1+...+�W
)}) in S and for any

x ∈ �, by

ResS(x) =
√√√√�1+...+�W∑

i=1

(bi − 〈ai , x〉)2. (2)

Note that each element of this problem set S specifies an
ordered sequence of W blocks of linear equations of the form
〈ai , x〉 = bi where 〈*,*〉 denotes the inner product in RJ (and
thus S is an appropriate representation of the so-called “or-
dered subsets” approach to tomographic reconstruction,51 as
well as of other earlier-published block-iterative methods that
proposed essentially the same idea52–54). The proximity func-
tion Res on S is the residual that we get when a particular x is
substituted into all the equations of a particular problem S.

II.B. Algorithms and outputs

We now define the concept of an algorithm in the general
context of problem structures. For technical reasons that will
become clear as we proceed with our development, we intro-
duce an additional set �, such that � ⊆ � ⊆ RJ . (Both �

and � are assumed to be known and fixed for any particu-
lar problem structure 〈T ,Pr〉.) An algorithm P for a problem
structure 〈T ,Pr〉 assigns to each problem T ∈ T an oper-
ator PT : � → �. This definition is used to define iterative
processes that, for any initial point x ∈ �, produce the (po-
tentially) infinite sequence ((PT )kx)∞k=0 (that is, the sequence
x, PT x, PT (PT x), · · ·) of points in �. We discuss below how
such a potentially infinite process is terminated in practice.

Selecting � = RJ
+ and � = RJ for the problem structure

〈S, Res〉 of Subsection II.A, an example of an algorithm R is
specified by

RS x = QBSW
· · · BS1 x, (3)

where S is the problem specified above in Eq. (2) and, for
1 ≤ w ≤ W, BSw

: � → � is defined by

BSw
x = x + 1

�w

�1+...+�w∑
i=�1+...+�w−1+1

bi − 〈ai , x〉
‖ai‖2

ai , (4)

where ‖a‖ denotes the norm of the vector a in RJ , and Q :
� → � is defined by

(Qx)j = max{0, xj }, for 1 ≤ j ≤ J. (5)

Note that RS : � → �. This specific algorithm R is a typ-
ical example of the so-called block-iterative methods men-
tioned above. Except for the presence of Q in Eq. (3), which
enforces non-negativity of the components, it is identical to
an algorithm used and illustrated in Ref. 31. With the Q ab-
sent from the definition of the algorithm, � has to be the
whole of RJ ; the practical consequence of the presence ver-
sus the absence of Q in the tomographic application is illus-
trated in Subsection III.D. We also note that special cases of
the presented algorithm include the classical reconstruction
methods such as algebraic reconstruction technique (ART) (if
�w = 1, for 1 ≤ w ≤ W ) and SIRT (if W = 1); see, for ex-
ample, Chaps. 11 and 12 of Ref. 55.

For a problem structure 〈T ,Pr〉, a T ∈ T , an ε ∈ R+,
and a sequence R = (xk)∞k=0 of points in �, we use O(T,
ε, R) to denote the x ∈ � that has the following properties:
PrT (x) ≤ ε and there is a non-negative integer K such that
xK = x and, for all non-negative integers k <KPrT (xk) > ε.
Clearly, if there is such an x, then it is unique. If there is no
such x, then we say that O(T, ε, R) is undefined, otherwise
we say that it is defined. The intuition behind this definition
is the following: if we think of R as the (infinite) sequence
of points that is produced by an algorithm (intended for the
problem T) without a termination criterion, then O(T, ε, R) is
the output produced by that algorithm when we add to it in-
structions that make it terminate as soon as it reaches a point
that is ε-compatible with T.

II.C. Bounded perturbation resilience

The notion of a bounded perturbations resilient algorithm
P for a problem structure 〈T ,Pr〉 has been defined in a math-
ematically precise manner.29 However, that definition is not
satisfactory from the point of view of applications in medical
physics (or indeed in any area involving noisy data), because
it is useful only for problems T for which there is a perfectly
compatible solution (that is, an x such that PrT (x) = 0). We
therefore extend here that notion as follows. An algorithm P
for a problem structure 〈T ,Pr〉 is said to be strongly pertur-
bation resilient if, for all T ∈ T ,

(i) there exists an ε ∈ R+ such that O(T , ε, ((PT )kx)∞k=0)
is defined for every x ∈ �;
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(ii) for all ε ∈ R+ such that O(T , ε, ((PT )kx)∞k=0) is de-
fined for every x ∈ �, we also have that O(T, ε′, R)
is defined for every ε′ > ε and for every sequence
R = (xk)∞k=0 of points in � generated by

xk+1 = PT (xk + βkv
k), for all k ≥ 0, (6)

where βkv
k are bounded perturbations, meaning that

the sequence (βk)∞k=0 of non-negative real numbers

is summable (that is,
∑∞

k=0
βk < ∞), the sequence

(vk)∞k=0 of vectors in RJ is bounded and, for all
k ≥ 0, xk + βkv

k ∈ �.

In less formal terms, the second of these properties says
that for a strongly perturbation resilient algorithm we have
that, for every problem and any non-negative real number ε,
if it is the case that for all initial points from � the infinite se-
quence produced by the algorithm contains an ε-compatible
point, then it will also be the case that all perturbed sequences
satisfying Eq. (6) contain an ε′-compatible point, for any
ε′ > ε.

Having defined the notion of a strongly perturbation re-
silient algorithm, we next show that this notion is of relevance
to problems in medical physics. We illustrate the use of this
in tomography in Sec. III. We first need to introduce some
mathematical concepts.

Given an algorithm P for a problem structure 〈T ,Pr〉 and
a T ∈ T , we say that P is convergent for T if, for every x ∈ �,
there exists a unique y(x) ∈ � such that, limk→∞(PT )kx
= y(x), meaning that for every positive real number δ, there
exists a non-negative integer K, such that ‖(PT )kx − y(x)‖
≤ δ, for all non-negative integers k ≥ K. If, in addition, there
exists a γ ∈ R+ such that PrT ( y(x)) ≤ γ , for every x ∈ �,
then we say that P is boundedly convergent for T.

A function f : � → R is uniformly continuous if, for ev-
ery ε > 0 there exists a δ > 0, such that, for all x, y ∈ �,
|f (x) − f ( y)| ≤ ε provided that ‖x − y‖ ≤ δ. An example
of a uniformly continuous function is ResS of Eq. (2), for
any S ∈ S. This can be proved by observing that the right-
hand side of Eq. (2) can be rewritten in vector/matrix form
as ‖b − Ax‖ and then selecting, for any given ε > 0, δ to be
ε/‖A‖, where ‖A‖ denotes the matrix norm of A.

An operator O: � → �, is nonexpansive if ‖Ox − Oy‖
≤ ‖x − y‖, for all x, y ∈ �. An example of a nonexpansive
operator is the RS of Eq. (3). The proof of this is also sim-
ple. It follows from discussions regarding similar claims in
Ref. 27 that the BSw

: RJ → RJ of Eq. (4) is a nonexpan-
sive operator, for 1 ≤ w ≤ W, and that the operator Q of
Eq. (5) is also nonexpansive. Obviously, a sequential appli-
cation of nonexpansive operators results in a nonexpansive
operator and thus RS is nonexpansive.

Now we state an important new result that gives suffi-
cient conditions for strong perturbation resilience: If P is
an algorithm for a problem structure 〈T ,Pr〉 such that, for
all T ∈ T , P is boundedly convergent for T, PrT : � → R
is uniformly continuous, and PT : � → � is nonexpansive,
then P is strongly perturbation resilient. The importance of
this result lies in the fact that the rather ordinary condition of
uniform continuity for the proximity function and the reason-

able conditions of bounded convergence and nonexpansive-
ness of the algorithmic operators guarantee that we end up
with a strongly perturbation resilient algorithm. The proof of
this new result involves some mathematical technicalities and
is therefore presented in the Appendix as Theorem 1.

II.D. Optimization criterion and nonascending vector

Now suppose, as is indeed the case for the constrained
optimization problems discussed in Sec. I, that in addition
to a problem structure 〈T ,Pr〉 we are also provided with
an optimization criterion, which is specified by a function
φ : � → R, with the convention that a point in � for which
the value of φ is smaller is considered superior (from the point
of view of our application) to a point in � for which the value
of φ is larger. In the tomography context, any of the functions
of x that are listed as a “secondary optimization criterion” (an
alternative name is a “regularizer”) in Sec. 6.4 of Ref. 55 is an
acceptable choice for the optimization criterion φ. These in-
clude weighted norms, the negative of Shannon’s entropy and
total variation. It is the last of these that we discuss in detail in
the illustrative example below. The essential idea of the supe-
riorization methodology presented in this paper is to make use
of the perturbations of Eq. (6) to transform a strongly pertur-
bation resilient algorithm that seeks a constraints-compatible
solution into one whose outputs are equally good from the
point of view of constraints-compatibility, but are superior
according to the optimization criterion. We do this by pro-
ducing from the algorithm another one, called its superi-
orized version, by making sure not only that the βkv

k are
bounded perturbations, but also that φ(xk + βkv

k) ≤ φ(xk),
for all k ≥ 0.

In order to ensure this we introduce a new concept (closely
related to the concept of a “descent direction” that is widely
used in optimization). Given a function φ : � → R and a
point x ∈ �, we say that a vector d ∈ RJ is nonascending
for φ at x if ‖d‖ ≤ 1 and

there is a δ > 0 such that for all λ ∈ [0, δ],

(x + λd) ∈ � and φ(x + λd) ≤ φ(x).
(7)

Note that irrespective of the choices of φ and x, there is al-
ways at least one nonascending vector d for φ at x, namely, the
zero-vector, all of whose components are zero. This is a useful
fact for proving results concerning the guaranteed behavior of
our proposed procedures. However, in order to steer our algo-
rithms towards a point at which the value of φ is small, we
need to find a d such that φ(x + λd) < φ(x) rather than just
φ(x + λd) ≤ φ(x) as in Eq. (7). In some earlier papers on
superiorization27–31 it was assumed that � = RJ and that φ

is a convex function. This implied that, for any point x ∈ �,
φ had a subgradient g ∈ RJ at the point x. It was suggested
that if there is such a g with a positive norm, then d should
be chosen to be −g/‖g‖, otherwise d should be chosen to be
the zero vector. However, there are approaches (not involving
subgradients) to selecting an appropriate d; an example can be
found in Ref. 32 in which d is found without using subgradi-
ents for the case when φ is the �1-norm of the Haar transform.
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The method we used for selecting a nonascending vector in
the experiments reported in this paper is specified at the end
of Subsection III.A.

II.E. Superiorized version of an algorithm

We now make precise the ingredients needed for trans-
forming an algorithm into its superiorized version. Let � and
� be the underlying sets for a problem structure 〈T ,Pr〉
(� ⊆ � ⊆ RJ , as discussed at the beginning of Subsec-
tion II.B), P be an algorithm for 〈T ,Pr〉 and φ : � → R.
The following description of the Superiorized Version of
Algorithm P produces, for any problem T ∈ T , a sequence
RT = (xk)∞k=0 of points in � for which, for all k ≥ 0, Eq. (6)
is satisfied. We show this to be true, for any algorithm P, after
the description of the Superiorized Version of Algorithm P.
Furthermore, since the sequence RT is steered by Superiorized
Version of Algorithm P towards a reduced value of φ, there
is an intuitive expectation that the output of the superiorized
version is likely to be superior (from the point of view of
the optimization criterion φ) to the output of the original
unperturbed algorithm. This last statement is not precise and
so it cannot be proved in a mathematical sense for an arbitrary
algorithm P; however, that should not stop us from applying
the easy procedure given below for automatically producing
the superiorized version of P and experimentally checking
whether it indeed provides us with outputs superior to those
of the original algorithm. The well-demonstrated nature of
heuristic optimization approaches is that they often work in
practice even when their performance cannot be guaranteed
to be optimal.33–35

Nevertheless, we can push our theory further than the hope
expressed in the last paragraph, by considering superiorized
versions of algorithms that satisfy some condition. In this pa-
per, the condition that we discuss is strong perturbation re-
silience. We show below that if P is strongly perturbation
resilient, then, for any problem T ∈ T , a sequence RT pro-
duced by its superiorized version has the following desirable
property: For all ε ∈ R+, if O(T , ε, ((PT )kx)∞k=0) is defined
for every x ∈ �, then O(T, ε′, RT) is also defined for every
ε′ > ε; in other words, the Superiorized Version of Algorithm
P provides an ε′-compatible output. As stated above, the ad-
vantage of the superiorized version is that its output is likely
to be superior to the output of the original unperturbed al-
gorithm. We point out that strong perturbation resilience is a
sufficient, but not necessary, condition for guaranteeing such
desirable behavior of the superiorized version, finding addi-
tional sufficient conditions and proving that algorithms that
we wish to superiorize satisfy such conditions is part of our
ongoing research.

The superiorized version assumes that we have available
a summable sequence (γ�)∞�=0 of positive real numbers (for
example, γ � = a�, where 0 < a < 1) and it generates, simul-
taneously with the sequence (xk)∞k=0, sequences (vk)∞k=0, and
(βk)∞k=0. The latter is generated as a subsequence of (γ�)∞�=0,
resulting in a summable sequence (βk)∞k=0. The algorithm fur-
ther depends on a specified initial point x̄ ∈ � and on a posi-
tive integer N. It makes use of a logical variable called loop.

Superiorized Version of Algorithm P

(i) set k = 0
(ii) set xk = x̄
(iii) set � = −1
(iv) repeat
(v) set n = 0
(vi) set xk,n = xk

(vii) while n < N
(viii) set vk,n to be a nonascending vector for φ at

xk,n

(ix) set loop = true
(x) while loop
(xi) set � = � + 1
(xii) set βk, n = γ �

(xiii) set z = xk,n + βk,nv
k,n

(xiv) if z ∈ � and φ(z) ≤ φ(xk), then
(xv) set n = n + 1
(xvi) set xk,n = z
(xvii) set loop = false
(xviii) set xk+1 = PT xk,N

(xix) set k = k + 1.

Next we analyze the behavior of the Superiorized Version of
Algorithm P.

The iteration number k is set to 0 in (i) and xk = x0 is set
to its initial value x̄ in (ii). The integer index � for picking the
next element from the sequence (γ�)∞�=0 is initialized to −1
by line (iii), it is repeatedly increased by line (xi). The lines
(v)–(xix) that follow the repeat in (iv) perform a complete
iterative step from xk to xk+1, infinite repetitions of such steps
provide the sequence RT = (xk)∞k=0. During one iterative step,
there is one application of the operator PT , in line (xviii), but
there are N steering steps aimed at reducing the value of φ;
the latter are done by lines (v)–(xvii). These lines produce a
sequence of points xk,n, where 0 ≤ n ≤ N with xk,0 = xk ,
xk,n ∈ �, and φ(xk,n) ≤ φ(xk).

We prove the truth of the last sentence by induction on
the non-negative integers. For n = 0, we have by lines (v)
and (vi) that xk,0 = xk . But xk ∈ � , since it is either x̄ that
is assumed to be in � due to lines (i) and (ii) or it is in the
range � of PT due to lines (xviii) and (xix). Now we assume,
for any 0 ≤ n < N, that xk,n ∈ � and φ(xk,n) ≤ φ(xk) and
show that lines (viii)–(xvii) perform a computation that leads
from xk,n to an xk,n+1 ∈ � that satisfies φ(xk,n+1) ≤ φ(xk).
To see this, observe that line (viii) sets vk,n to be a nonascend-
ing vector for φ at xk,n, which implies that Eq. (7) is satis-
fied with x = xk,n and d = vk,n. Line (ix) sets loop to true,
and it remains true while searching for the desired xk,n+1,
by repeatedly executing the loop sequence that follows line
(x). In this sequence, line (xi) increases � by 1 and line (xii)
sets βk, n to γ �. Thus for the vector z defined by line (xiii),
z ∈ � and φ(z) ≤ φ(xk,n), provided that βk, n is not greater
than the δ in Eq. (7). Since (γ�)∞�=0 is a summable sequence
of positive real numbers, there must be a positive integer L
such that γ � ≤ δ, for all � ≥ L. This implies that if we ap-
plied lines (xi)–(xiii) often enough, we would reach a vector
z that satisfies z ∈ � and φ(z) ≤ φ(xk,n). If the condition in
line (xiv) is not satisfied when the process gets to it, then lines
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(xi)–(xiii) are again executed and eventually we get a vector
z for which the condition in line (xiv) is satisfied due to the
induction hypothesis that φ(xk,n) ≤ φ(xk). By lines (xv) and
(xvi) we see that at that time xk,n+1 is set to z and so we ob-
tain that xk,n+1 ∈ � and φ(xk,n+1) ≤ φ(xk), as desired. Line
(xvii) sets loop to false and so control is returned to line (vii).
When this happens for the Nth time, it will be the case that n
= N and, therefore, line (xviii) is used to produce xk+1 ∈ �

and the increasing of k by line (xix) allows us then to move
on to the next iterative step. Infinite repetition of such steps
produces the sequence RT = (xk)∞k=0 of points in �.

We now show that if O(T , ε, ((PT )kx)∞k=0) is defined for
every x ∈ �, then, for any ε′ > ε, the Superiorized Version
of Algorithm P produces an ε′-compatible output. Since P
is assumed to be strongly perturbation resilient, this desired
result follows if we can show that there exists a summable
sequence (βk)∞k=0 of non-negative real numbers and a bounded
sequence (vk)∞k=0 of vectors in RJ such that Eq. (6) is satisfied
for all k ≥ 0. In view of line (xviii), this is achieved if we can
define the βk and the vk so that xk,N = xk + βkv

k . This is
done by setting

βk = max{βk,n | 0 ≤ n < N}, (8)

vk =
N−1∑
n=0

βk,n

βk

vk,n. (9)

That these assignments result in xk,N = xk + βkv
k follows

from lines (v)–(xvii). From line (xii) follows that (βk)∞k=0 is
a subsequence of (γ�)∞�=0 and, hence, it is a summable se-
quence of non-negative real numbers. Since each ‖vk,n‖ ≤ 1
by the definition of a nonascending vector, it follows from
Eqs. (8) and (9) that ‖vk‖ ≤ N and so (vk)∞k=0 is bounded.
Part of the condition expressed in Eq. (6) is that, for all
k ≥ 0, xk + βkv

k ∈ �. This follows from the fact that
xk,N = xk + βkv

k is assigned its value by line (xvi), but only
if the condition expressed in line (xiv) is satisfied.

In conclusion, we have shown that the superiorized ver-
sion of a strongly perturbation resilient algorithm produces
outputs that are essentially as constraints-compatible as those
produced by the original version of the algorithm. However,
due to the repeated steering of the process by lines (vii)–(xvii)
towards reducing the value of the optimization criterion φ, we
can expect that the output of the superiorized version will be
superior (from the point of view of φ) to the output of the
original algorithm.

II.F. Information on performance comparison
with MAP methods

Using our notation, the constrained minimization formula-
tion that we are considering is as follows: Given an ε ∈ R+,

minimize φ(x), subject to PrT (x) ≤ ε. (10)

The aim of superiorization is not identical with the aim of
constrained minimization in Eq. (10). One difference is that ε

is not “given” in the superiorization context. The superioriza-
tion of an algorithm produces a sequence and, for any ε, the
associated output of the algorithm is considered to be the first
x in the sequence for which PrT (x) ≤ ε. The other difference
is that we do not claim that this output is a minimizer of φ

among all points that satisfy the constraint, but hope only that
it is usually an x for which φ(x) is at the small end of its range
of values over the set of constraint-satisfying points. This lat-
ter difference is generally shared by comparisons of a heuris-
tic approach with an exact approach to solving a constrained
minimization problem.

The MAP (or regularized) formulation of a physical prob-
lem that leads to the constrained minimization problem (10)
is the unconstrained minimization problem of the form: Given
a β ∈ R+,

minimize [φ(x) + βPrT (x)]. (11)

Formulations of both kinds [i.e., the ones of
Eqs. (10) and (11)] are widely used for solving medical
physics problems and the question “Which of these two for-
mulations leads to faster or better solutions of the underlying
physical problem?” is open. Examples of both formulations
with various choices for PrT and φ are listed in the beginning
parts of the paper of Goldstein and Osher.47

We now return to the question raised near the end of
Sec. I: Will superiorization produce superior results to those
produced by contemporary MAP methods or is it faster than
the better of such methods? As yet, there is very little informa-
tion available regarding this general question; in fact, we are
aware of only one published study.45 That study compared
a superiorization algorithm with the algorithm of Goldstein
and Osher that they refer to as TwIST (Ref. 46) with split
Bregman47 as the substep, which is indeed a contemporary
method that uses the MAP formulation. (For example, see the
discussion of the split Bregman method in Ref. 56.) The prob-
lem S to which the two algorithms were applied was one from
the tomographic problem set S defined in Eq. (1). ResS as de-
fined in Eq. (2) was used as the proximity function and total
variation, T V as defined below in Eq. (12), was the choice for
φ. It is reported in Ref. 45 that for the outputs of the two algo-
rithms that were being compared, the values of ResS and T V

were very similar, but the superiorization algorithm produced
its output four times faster than the MAP method.

III. AN ILLUSTRATIVE EXAMPLE

III.A. Application to tomography

We use tomography to refer to the process of reconstruct-
ing a function over a Euclidean space from estimated values
of its integrals along lines (that are usually, but not necessar-
ily, straight). The particular reconstruction processes to which
our discussion applies are the series expansion methods, see
Sec. 6.3 of Ref. 55, in which it is assumed that the function
to be reconstructed can be approximated by a linear combi-
nation of a finite number (say J) of basis functions and the
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reconstruction task becomes one of estimating the coeffi-
cients of the basis functions in the expansion. Sometimes,
prior knowledge about the nature of the function to be recon-
structed allows us to confine the sought-after vector x of coef-
ficients to a subset � of RJ (such as the non-negative orthant
RJ

+). We use i to index the lines along which we integrate,
ai ∈ RJ to denote the vector whose jth component is the in-
tegral of the jth basis function along the ith line, and bi to de-
note the measured integral of the function to be reconstructed
along the ith line. Under these circumstances the constraints
come from the desire that, for each of the lines, 〈ai , x〉 should
be close (in some sense) to bi.

To make this concrete, consider Eq. (1). Such a descrip-
tion of the constraints arises in tomography by grouping the
lines of integration into W blocks, with �w lines in the wth
block. Such groupings often (but not always) are done accord-
ing to some geometrical condition on the lines (for example,
in case of straight lines, we may decide that all the lines that
are parallel to each other form one block). In this framework,
the proximity function Res defined by Eq. (2) provides a rea-
sonable measure of the incompatibility of a vector x with the
constraints. The algorithm R described by Eqs. (3)–(5) is ap-
plicable to this concrete formulation.

There are many optimization criteria that have been used in
tomography, see Sec. 6.4 of Ref. 55, here we discuss the one
called T V , whose use has been popular in medical physics
recently, see as examples Refs. 20, 22, 23, and 41–44. The
definition of T V that we use here requires a certain way of
selecting the basis functions. It is assumed that the function to
be reconstructed is defined in the plane R2 and is zero-valued
outside a square-shaped region in the plane. This region is
subdivided into J smaller equal-sized squares (pixels) and the
J basis functions are defined by having value one in exactly
one pixel and value zero everywhere else. We index the pixels
by j and we let C denote the set of all indices of pixels that
are not in the rightmost column or the bottom row of the pixel
array. For any pixel with index j in C, let r(j) and b(j) be the
index of the pixel to its right and below it, respectively. We
define T V : RJ → R by

T V (x) =
∑
j∈C

√
(xj − xr(j ))2 + (xj − xb(j ))2. (12)

The method we adopted to generate a nonascending vector
for the T V function at an x ∈ RJ is based on Theorem 2 of
the Appendix. It is applicable since T V : RJ → R is a con-
vex function; see, for example, the end of the Proof of Propo-
sition 1 of Ref. 41. Now consider an integer j′ such that 1 ≤ j′

≤ J. Looking at the sum in Eq. (12), we see that xj ′ appears
in at most three terms, in which j′ must be either j, or r(j), or
b(j) for some j ∈ C. By taking the formal partial derivatives of
these three terms, we see that ∂T V

∂xj ′ (x) is well defined if the de-
nominator in the formal derivative of each of the three terms
is not zero for x. In view of this, we define the g in Theorem 2
as follows. If the denominator in any of the three formal par-
tial derivatives with respect to xj ′ has an absolute value less
than a very small positive number (we used 10−20), then we
set gj ′ to zero, otherwise we set it to ∂T V

∂xj ′ (x). Clearly, the re-

sulting g ∈ RJ satisfies the condition in Theorem 2 and hence
provides a d that is a nonascending vector for T V at x.

Previously reported reconstructions using T V -superior-
ization selected the d using subgradients as discussed in the
paragraph following Eq. (7); such a d is not guaranteed to
be a nonascending vector for the T V function. What we are
proposing here is not only mathematically rigorous (in the
sense that it is guaranteed to produce a nonascending vector
for the T V function), but it can also lead to a better recon-
structions, as illustrated in Subsection III.D.

III.B. The data generation for the experiments

The datasets used in the experiments reported in this
paper were generated in such a way that they share the
noise-characteristics of CT scanners when used for scanning
the human head and brain; as discussed, for example, in
Chap. 5 of Ref. 55. They were generated using the software
SNARK09.57

The head phantom that was used for data generation is
based on an actual cross section of the human head. It is de-
scribed as a collection of geometrical objects (such as ellipses,
triangles, and segments of circles) whose combination accu-
rately resembles the anatomical features of the actual head
cross section. In addition, the basic phantom contains a large
tumor. The actual phantom used was obtained by a random
variation of the basic phantom, by incorporating into it lo-
cal inhomogeneities and small low-contrast tumors at ran-
dom locations. This phantom is represented by the image in
Fig. 1(a). That image comprises 485 × 485 pixels each of size
0.376 mm by 0.376 mm. The values assigned to the pixels are
obtained by an 11 × 11 subsampling of the pixels and aver-
aging the values assigned to the subsamples by the geomet-
rical objects that are used to describe the anatomical features
and the tumors. Those values are approximate linear atten-
uation coefficients per cm at 60 keV (0.416 for bone, 0.210
for brain, 0.207 for cerebrospinal fluid). The contrast of the
small tumors with their background is 0.003 cm–1. In order
to clearly see the low-contrast details in the interior of the
skull, we use zero (black) to represent the value 0.204 (or any-
thing less) and 255 (white) to represent 0.21675 or anything
more). The same is true for all the images in the rest of this
paper.

For the selected head phantom we generated parallel
projection data, in which one view comprises estimates of
integrals through the phantom for a set of 693 equally spaced
parallel lines with a spacing of 0.0376 cm between them. (We
chose to simulate parallel rather than divergent projection
data, since the reconstruction by the method of Ref. 42 with
which we wish to compare the superiorization approach was
performed for us by the authors of Ref. 42 on parallel data.
Even though contemporary CT scanners use divergent pro-
jection data, results obtained by the use of parallel projection
data are relevant to them, since it is known that the quality of
reconstructions from these two modes of data collection are
very similar as long as the data generations use similar fre-
quencies of sampling of lines and similar noise characteristics
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FIG. 1. (a) A head phantom. (b) Reconstruction of the head phantom from realistically simulated projection data for 360 views using ART with blob basis
functions.

in the estimated integrals for those lines; see, for example, the
reconstructions from divergent and parallel projection data in
Fig. 5.15 of Ref. 55.) In calculating these estimates. we take
into consideration the effects of photon statistics, detector
width, and scatter. Details of how we do this exactly can be
found in Secs. 5.5 and 5.9 of Ref. 55. Briefly, quantum noise
is calculated based on the assumption that approximately
2 000 000 photons enter the head along each ray, detector
width is simulated by using 11 subrays along each of
which the attenuation is calculated independently and then
combined at the detector, and 5% of the photons get counted
not by the detector for the ray in question but detectors for
the neighboring rays. For the experiments in this paper, we
did not simulate the polyenergetic nature of the x-ray source.

To indicate what can be achieved in clinical CT, we show in
Fig. 1(b) a reconstruction that was made from data comprising
of 360 such views with the reconstruction algorithm known
as ART with blob basis functions; see Chap. 11 of Ref. 55.

III.C. Superiorization reconstruction from a few views

The main reason in the literature for advocating the use of
T V as the optimization criterion is that by doing so one can
achieve efficacious reconstructions even from sparsely sam-
pled data. In our own work31 with realistically simulated CT
data, we found that this is not always the case and this will be
demonstrated again by the experiments reported in the current
paper.

FIG. 2. Reconstructions using T V as the optimization criterion from realistically simulated projection data for 60 views using (a) ASD-POCS and (b) supe-
riorization. As compared to Fig. 1(b), these reconstructions fail in two ways: they do not show some of the fine details in the phantom and they present some
artifactual variations. The former of these is a consequence of reconstructing from a much smaller dataset than used for Fig. 1(b). The latter is due to using a
very narrow window (13.5 HU) in these displays. Were we to use a wider display window (e.g., from –429 HU to 429 HU) for the reconstructions in this figure
and in Fig. 1(b), the visual appearance of the resulting images would be nearly indistinguishable.
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There have appeared in the literature some approaches to
T V minimization that seem to indicate a more efficacious per-
formance for CT than the one reported in Ref. 31. One of
these is the adaptive steepest descent projections onto convex
sets (ASD-POCS) algorithm, which is described in detail in
the much-cited paper of Sidky and Pan42 and whose use has
been since reported in a number of subsequent publications,
for example, in Refs. 23 and 43. We note that ASD-POCS
was designed with the aim of producing an exact minimiza-
tion algorithm, in contrast to our heuristic superiorization ap-
proach. Translating Eqs. (6)–(8) of Ref. 42 into our termi-
nology, the aim of ASD-POCS is the following: Given an
ε ∈ R+, find an ε-compatible x ∈ � = RJ

+ for which T V (x)
is minimal. [Note that this aim is a special case of the con-
strained optimization formulation presented in Eq. (10).] In
order to test ASD-POCS, we generated realistic projection
data as described in Subsection III.B but for only 60 views
at 3◦ increments with the spacing between the lines for which
integrals are estimated set at 0.752 mm. Thus the number of
rays (and hence the number photons put into the head) in this
dataset is a 12th of what it is in the dataset used to produce
the reconstruction in Fig. 1(b). A reconstruction from these
data was produced for us using ASD-POCS by the authors of
Ref. 42 (this ensured that it does not suffer due to our misinter-
pretation of the algorithm or from our inappropriate choices
of the free parameters), it is shown in Fig. 2(a).

Since the image quality of Fig. 2(a) is not anywhere near
to that of Fig. 1(b), we present here a brief discussion as to
why we are showing such images. Many publications in the
recent medical imaging literature have claimed that medically
efficacious reconstructions can be obtained by the use of T V -
minimization from data as sparse as what was used to produce
Fig. 2(a). (In fact, ASD-POCS was motivated and used with
such an aim in mind.23,42, 43) Such publications usually show
reconstructions from sparse data as evidence for the validity
of their claims. They can do this because in their presented
illustrations the features that are observable in the reconstruc-
tions are usually much larger and/or of much higher contrast
against their backgrounds than the small “tumors” in Fig. 1(a),
which are perfectly visible in the reconstruction in Fig. 1(b),
but are not detectable in the reconstruction from sparse data
in Fig. 2(a). The reason why that reconstruction appears to be
unacceptably bad is that the display window (from 0.204 cm–1

linear attenuation coefficient to 0.21675 cm–1 linear attenua-
tion coefficient) is very narrow; it was selected to enhance
the visibility of the small low-contrast tumors. The width of
this window corresponds to about 13.5 Hounsfield units (HU).
As compared to this, in their evaluation of sparse-view recon-
struction from flat-panel-detector cone-beam CT, Bian et al.43

use what they call a “soft-tissue grayscale window” (also a
“narrow window”) from –429 HU to 429 HU to display head
phantom reconstructions. Using such a window for our re-
constructions shown Figs. 2(a) and 1(b) would result in im-
ages that are nearly indistinguishable from each other. Thus
reporting the images using such a display window is consis-
tent with the claim that a TV-minimizing reconstruction from
a few views is similar in quality to a more traditional recon-
struction from many views. However, our much narrower dis-

play window reveals that this is not really so. We therefore
continue using our much narrower window in what follows,
since it clearly reveals the nature of the reconstructions being
compared, warts and all.

While this ASD-POCS reconstruction is not as good as it
should be for diagnostic CT of the brain (due to the sparsity
of the data), it is visually better than the reconstruction using
superiorization from similar data as reported in Ref. 31. We
discuss the reasons for this in Subsection III.D. Here, we con-
centrate on examining whether one can achieve a reconstruc-
tion using superiorization that is as good as that produced by
ASD-POCS from the same data.

For this we first need to examine the numerical properties
of the ASD-POCS reconstruction. This reconstruction uses
485 × 485 pixels each of size 0.376 mm by 0.376 mm. This
implies that J = 235,225 and it also determines the compo-
nents of the vectors ai ∈ RJ in the precise specification of
the problem S. The ResS, as defined by Eq. (2), of the ASD-
POCS reconstruction is 0.33 and the T V , as defined by Eq.
(12), is 835.

We applied to the same problem S a superiorized version
of the algorithm R defined by Eq. (3). To complete the spec-
ification of R, we point out that for the ordering of views we
chose the “efficient” one that was introduced in Ref. 58 and
is also discussed on p. 209 of Ref. 55. The choices we made
for the superiorization are the following: γ � = 0.99995�, x̄
is the zero vector, and N = 20. The nonascending vector was
computed by the method described in the paragraph below
[Eq. (12)]. Denoting by RS the infinite sequence of points in
� that is produced by the superiorized version of the algo-
rithm R when applied to the problem S, we chose as our re-
construction x∗ = O(S, 0.33, RS). For such a reconstruction
we have, by the definition of O, that ResS(x∗) ≤ 0.33; in other
words, the output of the superiorization algorithm is at least
as constraints-compatible with S as the output of ASD-POCS.
From the point of view of T V -minimization, our x∗ is slightly
better: T V (x∗) = 826.

The superiorization reconstruction is displayed in
Fig. 2(b). Visually, it is similar to the reconstruction produced
by ASD-POCS. From the optimization point of view it
achieves the desired aim better than ASD-POCS does, since
it results in smaller values for both ResS and for T V , even
though only slightly.

That the two reconstructions in Fig. 2 are very similar is
not surprising because a comparison of the pseudocodes re-
veals that the ASD-POCS algorithm in Ref. 42 is essentially a
special case of the Superiorized Version of Algorithm P, even
though it has been derived from rather different principles. To
obtain the ASD-POCS algorithm from our methodology de-
scribed here, we would have to choose ART (see Chap. 11
of Ref. 55) as the algorithm that we are superiorizing. Such
a superiorization of ART was reported in the earliest paper
on superiorization.27 For the illustration in our current paper,
we decided to superiorize the block-iterative algorithm R de-
fined by Eq. (3). This illustrates the generality of the superi-
orization approach: it is applicable not only to a large class
of constrained optimization problems, but also enables the
use of any of a large class of iterative algorithms designed to
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produce a constraints-compatible solutions. A recent publica-
tion aimed at producing an exact T V -minimizing algorithm
based on the block-iterative approach is Ref. 44.

III.D. Effects of variations in the reconstruction
approach

The reconstruction in Fig. 2(a) produced by ASD-POCS
definitely “looks better” than a reconstruction in Ref. 31,
which was obtained using superiorization from similar data.
Since, as discussed in the last paragraph of Subsection III.C,
the ASD-POCS algorithm in Ref. 42 can be obtained as a spe-
cial case of superiorization, it must be that some of the choices
made in the details of the implementations are responsible for
the visual differences. An analysis of the implementational
details adopted by the two approaches revealed several differ-
ences. After removing these differences, the superiorization
approach produced the image in Fig. 2(b), which is very sim-
ilar to the reconstruction produced by ASD-POCS. We now
list the implementational choices that were made for superi-
orization to make its performance match that of the reported
implementation of ASD-POCS.

One implementational difference is in the stopping-rule of
the iterative algorithm; that is, the choice of ε in determin-
ing the output O(S, ε, RS). Since the data are noisy, the phan-
tom itself does not match the data exactly. In previously re-
ported implementations of superiorization it was assumed that
the iterative process should terminate when an image is ob-
tained that is approximately as constraints-compatible as the
phantom; in the case of the phantom and the projections data
on which we report here the value of ResS for the phantom
is approximately 0.91, which is larger than its value (0.33)
for the reconstruction produced by ASD-POCS. The output
O(S, 0.91, RS) is shown in Fig. 3(a). This is a wonderfully
smooth reconstruction, its T V value is only 771. However,
this smoothness comes at a price: we lose not only the abil-
ity to detect the large tumor, but we cannot even see anatomic
features (such as the ventricular cavities) inside the brain. So
it appears that, in order to see medically relevant features in
the brain, overfitting (in the sense of producing a reconstruc-
tion from noisy data that is more constraints-compatible than
the phantom) is desirable.

In the implementations that produced previously reported
reconstructions by superiorization, the number N in the Supe-
riorized Version of Algorithm P was always chosen to be 1.
It is possible that this is the wrong choice, making only this
change to what lead to the reconstruction in Fig. 2(b) results
in the reconstruction shown in Fig. 3(b). That image appears
similar to the image in Fig. 2(b), but it has a higher T V value,
namely, 832, which is still very slightly lower than that of the
ASD-POCS reconstruction. The choice N = 20 was based on
the desire to maintain consistency with what has been prac-
ticed using ASD-POCS, see p. 4790 of Ref. 42. It appears that
in the context of our paper the additional computing cost due
to choosing N to be 20 rather than 1 is not really justified. (We
note that if d is selected using subgradients as discussed in the
paragraph following Eq. (7) and thus d is not guaranteed to be
a nonascending vector for the T V function, then the choice of

20 rather than 1 for N results in a considerable improvement.
However, an even greater improvement is achieved even with
N = 1 by selecting d as recommended in this paper.)

Another important difference between the ASD-POCS im-
plementation and the previous implementations of the superi-
orization approach is the size of the pixels in the reconstruc-
tions. For the ASD-POCS reconstruction this was selected to
be 0.376 mm by 0.376 mm. In previously reported reconstruc-
tions by superiorization it was assumed that the edge of a
pixel should be the same as the distance between the paral-
lel lines along which the data are collected; that is, 0.752 mm
for our problem S. This assumption proved to be false. T V -
minimization takes care of undesirable artifacts that may oth-
erwise arise due to the smaller pixels and this leads to a visual
improvement. A superiorizing reconstruction with the larger
pixels, using ε = 0.33 and N = 20, is shown in Fig. 3(c).
(We note that the use of smaller pixels during iterative x-ray
CT reconstructions was also suggested in Ref. 59. However,
that approach is quite different from what is presented here:
its final result uses larger pixels whose values are obtained by
averaging assemblies of values provided by the iterative pro-
cess to the smaller pixels. There is no such downsampling in
our approach, our final result is presented using the smaller
pixels. Its smoothness is due to reduction of TV by the supe-
riorization approach rather than to averaging pixel values in a
denser digitization.)

Combining the use of the larger pixels with ε = 0.91 and
N = 1 results in the reconstruction shown in Fig. 3(d). This
reconstruction, for which the superiorization options were se-
lected according to what was done in Ref. 31, is visually
inferior to those shown in our Fig. 2. The reconstructions
displayed in Fig. 3 also illustrate another important point,
namely, that even though the mathematical results discussed
in this paper are valid for a large range of choices of the pa-
rameters in the superiorization algorithms, for medical effi-
cacy of the reconstructions attention has to be paid to these
choices since they can have a drastic effect on the quality of
the reconstruction.

It has been mentioned in Subsection II.B that except for
the presence of Q in Eq. (3), which enforces non-negativity
of the components, R is identical to the algorithm used and
illustrated in Ref. 31. It is known that CT reconstruction of
the brain from many views does not suffer from ignoring
the fact that the components of the x, which represent linear
attenuation coefficients, should be non-negative; as is illus-
trated in Fig. 1(b). This remains so when reconstructing from
a few views using the method and data that we have been dis-
cussing: if we do everything in exactly the same way as was
done to obtain the reconstruction with T V value 826 that is
shown in our Fig. 2(b) but remove Q from Eq. (3), then we
obtain a reconstruction in Fig. 4(a) whose T V value is 829.

Another variation that deserves discussion, because it has
been suggested in the literature,22 is one that does not come
about by making choices for the general approach of the Su-
periorized Version of Algorithm P but rather by changing the
nature of the approach. The variation in question is not appli-
cable in general, but can be applied to the special case when
the algorithm to be superiorized is the R defined by Eq. (3). It
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FIG. 3. Reconstructions produced by varying some of the parameters in the algorithm that produced Fig. 2(b). (a) Changing the termination criterion form
ε = 0.33 to ε = 0.91. (b) Changing the value of N from 20 to 1. (c) Reconstructing with pixel size 0.752 mm by 0.752 mm instead of 0.376 mm by 0.376 mm.
(d) Reconstructing with all the three changes of (a)–(c).

FIG. 4. Reconstructions by variations that do not fit into the framework within which the previously shown reconstructions were produced. (a) Not using
non-negativity in the algorithm. (b) Interleaving perturbations with blocks.
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was suggested as an improvement to the approach presented
above with the choice N = 1. The idea was based on recog-
nizing the block-iterative nature of the algorithmic operator
RS in Eq. (3) and intermingling the perturbation steps of lines
(vii)–(xvii) of the Superiorized Version of Algorithm R with
the projection steps BS1 , . . . , BSW

of Eq. (3). It was reported
in Ref. 22 that doing this is advantageous to using the Supe-
riorized Version of Algorithm R. However, when we applied
the variation of the Superiorized Version of Algorithm R that
is proposed in Ref. 22 to the problem S that we have been
using in this section, we ended up with the reconstruction in
Fig. 4(b) whose T V value is 920. This is not as good as what
was obtained using the version of the algorithm that produced
the reconstruction in Fig. 2(b). We conclude that the variation
suggested by Ref. 22, which does not fit into the theory of our
paper, does not have an advantage over what we are proposing
here, at least for the problem S that we have been discussing in
this section. We conjecture that the improvement reported in
Ref. 22 is due to selecting d using subgradients as discussed
in the paragraph following Eq. (7) and, as discussed earlier,
such an improvement is not obtained if d is selected by the
more appropriate method recommended in this paper.

IV. DISCUSSION AND CONCLUSIONS

Constrained optimization is an often-used tool in medical
physics. The methodology of superiorization is a heuristic (as
opposed to exact) approach to constrained optimization.

Although the idea of superiorization was introduced in
2007 and its practical use has been demonstrated in several
publications since, this paper is the first to provide a solid
mathematical foundation to superiorization as applied to the
noisy problems of the real world. These foundations include a
precise definition of constraints-compatibility, the concept of
a strongly perturbation resilient algorithm, simple conditions
that ensure that an algorithm is strongly perturbation resilient,
the superiorized version of an algorithm and the showing that
the superiorized version of a strongly perturbation resilient
algorithm produces outputs that are essentially as constraints-
compatible as those produced by the original version but are
likely to have a smaller value of the chosen optimization cri-
terion.

The approach is very general. For any iterative algorithm
P and for any optimization criterion φ for which we know
how to produce nonascending vectors, the pseudocode given
in Subsection II.E automatically provides the version of P that
is superiorized for φ.

We demonstrated superiorization for tomography when to-
tal variation is used as the optimization criterion. In particu-
lar, we illustrated on a particular tomography problem that, in
spite of its generality, superiorization produced a reconstruc-
tion that is as good as (from the points of view of constraints-
compatibility and T V -minimization) what was obtained by
the ASD-POCS algorithm that was specially designed for
T V -minimization in tomography.
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APPENDIX: MATHEMATICAL PROOFS

1. Conditions for strong perturbation resilience

Theorem 1. Let P be an algorithm for a problem structure
〈T ,Pr〉 such that, for all T ∈ T , P is boundedly convergent
for T, PrT : � → R is uniformly continuous, and PT : �

→ � is nonexpansive. Then P is strongly perturbation re-
silient.

Proof. We first show that there exists an ε ∈ R+ such
that O(T , ε, ((PT )kx)∞k=0) is defined for every x ∈ �. Un-
der the assumptions of the theorem, let γ ∈ R+ be such
that PrT ( y(x)) ≤ γ , for every x ∈ �. We prove that
O(T , 2γ, ((PT )kx)∞k=0) is defined for every x ∈ � as follows.
Select a particular x ∈ �. By uniform continuity of PrT ,
there exists a δ > 0, such that |PrT (z) − PrT ( y(x))| ≤ γ ,
for any z ∈ � for which ‖z − y(x)‖ ≤ δ. Since P is conver-
gent for T, there exists a non-negative integer K, such that
‖(PT )K x − y(x)‖ ≤ δ. It follows that

|PrT ((PT )K x)| ≤ |PrT ((PT )K x) −PrT (y(x))| + |PrT (y(x))|
≤ 2γ. (A1)

Now let T ∈ T and ε ∈ R+ be such that O(T , ε,

((PT )kx)∞k=0) is defined for every x ∈ �. To prove the theo-
rem, we need to show that O(T, ε′, R) is defined for every ε′

> ε and for every sequence R = (xk)∞k=0 of points in � for
which, for all k ≥ 0, Eq. (6) is satisfied for bounded perturba-
tions βkv

k . Let ε′ and R satisfy the conditions of the previous
sentence.

For k ≥ 0, we have, due to the nonexpansiveness of PT ,
that

‖xk+1 − PT xk‖ = ‖PT (xk + βkv
k) − PT xk‖ ≤ ‖βkv

k‖.
(A2)

Denote ‖βkv
k‖ by rk. Clearly, rk ∈ R+ and it follows from the

definition of bounded perturbations that
∑∞

k=0
rk < ∞.

We next prove by induction that, for every pair of non-
negative integers k and i,

‖xk+i − (PT )i xk‖ ≤
k+i−1∑
j=k

rj . (A3)
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Let k be an arbitrary non-negative integer. If i = 0, then
the value is zero on both sides of the inequality and hence
Eq. (A3) holds. Now assume that Eq. (A3) holds for an integer
i ≥ 0. Then, by Eq. (A2) and the nonexpansiveness of PT ,

‖xk+i+1 − (PT )i+1xk‖ ≤ ‖xk+i+1 − PT xk+i‖
+‖PT xk+i − (PT )i+1xk‖

≤ rk+i + ‖xk+i − (PT )i xk‖

≤ rk+i +
k+i−1∑
j=k

rj

=
k+i∑
j=k

rj , (A4)

which completes our inductive proof. A consequence of
Eq. (A3) is that, for every pair of non-negative integers k and
i,

‖xk+i − (PT )i xk‖ ≤
∞∑

j=k

rj . (A5)

Due to the summability of the non-negative sequence
(rk)∞k=0, the right-hand side (and hence the left-hand side) of
this inequality gets arbitrarily close to zero as k increases.

Since PrT is uniformly continuous, there exists a δ

such that, for all x, y ∈ �, |PrT (x) − PrT ( y)| ≤ ε′ − ε pro-
vided that ‖x − y‖ ≤ δ. Select a k so that

∑∞
j=k rj ≤ δ. By

the assumption that O(T , ε, ((PT )kx)∞k=0) is defined for ev-
ery x ∈ �, there exists a non-negative integer i for which
Pr((PT )i xk) ≤ ε. From Eq. (A5) we have, for this k and i,
that ‖xk+i − (PT )i xk‖ ≤ δ and, hence,

|PrT (xk+i)| ≤ |PrT (xk+i) − PrT ((PT )i xk)|
+|PrT ((PT )i xk)|

≤ (ε′ − ε) + ε = ε′, (A6)

proving that O(T, ε′, R) is defined. �

2. Nonascending vectors for convex functions

Theorem 2: Let φ : RJ → R be a convex function and let
x ∈ RJ . Let g ∈ RJ satisfy the property: For 1 ≤ j ≤ J, if the
jth component gj of g is not zero, then the partial derivative
∂φ

∂xj
(x) of φ at x exists and its value is gj. Define d to be the

zero vector if ‖g‖ = 0 and to be −g/‖g‖ otherwise. Then d
is a nonascending vector for φ at x.

Proof: The theorem is trivially true if ‖g‖ = 0, so we as-
sume that this is not the case. We denote by I the nonempty
set of those indices j for which gj �= 0.

For 1 ≤ j ≤ J, let sj be gj/|gj| for j ∈ I and be 0 otherwise,
and let ej ∈ RJ be the vector all of whose components are
zero except for the jth, which is one. Then, for 1 ≤ j ≤ J,
there exists a δj > 0 such that, for 0 ≤ λj ≤ δj,

φ(x − λj sj ej ) ≤ φ(x). (A7)

This is obvious if sj = 0. Otherwise, ∂φ

∂xj
(x) exists and in-

dicates φ increases at x if sj = 1 or that φ decreases at x if sj

= −1. The existence of the desired δj can be derived from the
standard definition of the partial derivative as a limit.

We define δ > 0 by

δ = ‖g‖
J

min
j∈I

{
δj

|gj |
}

. (A8)

Then we have that, for 0 ≤ λ ≤ δ,

φ (x + λd) = φ

⎛
⎝x − λ

J∑
j=1

|gj |
‖g‖ sj ej

⎞
⎠

= φ

⎛
⎝ J∑

j=1

1

J

(
x − λJ

|gj |
‖g‖ sj ej

)⎞
⎠

≤ 1

J

J∑
j=1

φ

(
x − λJ

|gj |
‖g‖ sj ej

)

≤ 1

J

J∑
j=1

φ(x)

= φ(x). (A9)

The first inequality above follows from the convexity of φ

and the second one follows from Eq. (A7), with λj defined to
be λJ

|gj |
‖g‖ , combined with Eq. (A8). Thus d is a nonascending

vector for φ at x. �
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Abstract The projected subgradient method for constrained minimization repeatedly
interlaces subgradient steps for the objective function with projections onto the fea-
sible region, which is the intersection of closed and convex constraints sets, to regain
feasibility. The latter poses a computational difficulty, and, therefore, the projected
subgradient method is applicable only when the feasible region is “simple to project
onto.” In contrast to this, in the superiorization methodology a feasibility-seeking al-
gorithm leads the overall process, and objective function steps are interlaced into it.
This makes a difference because the feasibility-seeking algorithm employs projec-
tions onto the individual constraints sets and not onto the entire feasible region.

We present the two approaches side-by-side and demonstrate their performance on
a problem of computerized tomography image reconstruction, posed as a constrained
minimization problem aiming at finding a constraint-compatible solution that has a
reduced value of the total variation of the reconstructed image.
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1 Introduction

Our aim in this paper is to expose the recently developed superiorization methodol-
ogy and its ideas to the optimization community by “confronting” it with the pro-
jected subgradient method. We juxtapose the projected subgradient method (PSM)
with the superiorization methodology (SM) and demonstrate their performance on a
large-size real-world application that is modeled, and needs to be solved, as a con-
strained minimization problem. The PSM for constrained minimization has been ex-
tensively investigated, see, e.g., [1, Sect. 7.1.2], [2, Sect. 3.2.3]. Its roots are in the
work of Shor [3] for the unconstrained case and in the work of Polyak [4, 5] for the
constrained case. More recent work can be found in, e.g., [6]. The superiorization
methodology was first proposed in [7], although without using the term superior-
ization. In that work, perturbation resilience (without using this term) was proved
for the general class of string-averaging projection (SAP) methods, see [8–12], that
use orthogonal projections and relate to consistent constraints. Subsequent investi-
gations and developments of the SM were done in [13–17]. More information on
superiorization-related work is given in Sect. 3.

It is not claimed that the PSM is the best optimization method for solving con-
strained minimization problems and there are many different alternative methods with
which SM could be compared. So, why did we chose to confront the PSM with our
SM? In a nutshell, our answer is that both methods interlace steps related to the objec-
tive function with steps oriented toward feasibility, but they differ in how they restore
or preserve feasibility. A major difficulty with the PSM is the need to perform, within
each iterative step, an orthogonal projection onto the feasible set of the constrained
minimization problem. If the feasible set is not “simple to project onto,” then the pro-
jection requires an independent inner-loop calculation to minimize the distance from
a point to the feasible set, which can be costly and hamper the overall effectiveness
of the PSM.

In the SM, we replace the notion of a fixed feasible set by that of a nonnegative
real-valued proximity function. This function serves as an indicator of how incom-
patible a vector is with the constraints. In such a formulation, the merit of an actual
output vector of any algorithm is indicated by the smallness of the two numbers,
i.e., the values of the proximity function and the objective function. The underlying
idea of SM is that many iterative algorithms that produce outputs for which the prox-
imity function is small are strongly perturbation resilient in the sense that, even if
certain kinds of changes are made at the end of each iterative step, the algorithm still
produces an output for which the proximity function is not larger. This property is
exploited by using permitted changes to steer the algorithm to an output that has not
only a small proximity function value, but has also a small objective function value.

The PSM requires that feasibility is regained after each subgradient step by per-
forming a projection onto the entire feasible set, whereas in the SM the feasibility-
seeking projection method proceeds by projecting (in a well-defined algorithmically
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structured regime dictated by the specific projection method) onto the individual sets,
whose intersection is the entire feasible set, and not onto the whole feasible set itself.
This has a potentially great computational advantage.

We elaborate on the motivation for this work in Sect. 2. In Sect. 3 we discuss
some superiorization-related work, in Sect. 4 the SM is presented, and in Sect. 5
we demonstrate the approaches of the SM and the PSM on a realistically-large-size
problem with data that arise from the significant problem of x-ray computed tomog-
raphy (CT) with total variation (TV) minimization, followed by some conclusions in
Sect. 6.

2 Motivation and Basic Notions

Throughout this paper, we assume that Ω is a nonempty subset of the J -dimensional
Euclidean space R

J . We consider constrained minimization problems of the form

minimize
{
φ(x) | x ∈ C

}
, (1)

where φ : RJ → R is an objective function, and C ⊆ Ω is a given feasible set.
Since we juxtapose the projected subgradient method (PSM) with the superioriza-

tion methodology (SM) and demonstrate their performance on a large-size real-world
application that is modeled, and needs to be solved, as a constrained minimization
problem, we now outline these two methods and explain our choice in detail.

In order to apply the PSM to solving (1), we need to assume that C is a nonempty
closed convex set and that φ is a convex function. The PSM generates a sequence of
iterates {xk}∞k=0 according to the recursion formula

xk+1 = PC

(
xk − tkφ

′(xk
))

, (2)

where tk > 0 is a step-size, φ′(xk) ∈ ∂φ(xk) is a subgradient of φ at xk , and PC

stands for the orthogonal (least Euclidean norm) projection onto the set C.
A major difficulty with (2) is the need to perform, within each iterative step, the

orthogonal projection. If the feasible set C is not “simple to project onto,” then the
projection requires an independent inner-loop calculation to minimize the distance
from the point xk − tkφ

′(xk) to the set C, which can be costly and hamper the overall
effectiveness of an algorithm that uses (2). Also, if the inner loop converges to the
projection onto C only in the limit, then, in practical implementations, it will have to
be stopped after a finite number of steps, and so xk+1 will be only an approximation
to the projection onto C, and it could even happen that it is not in C.

Even if we set aside our worries about projecting onto C in (2), there are still two
concerns when applying the PSM to real-world problems. One is that the iterative
process usually converges to the desired solution only in the limit. In practice, some
stopping rule is applied to terminate the process, and the output at that time may not
even be in C, and, even if it is in C, it is most unlikely to be the minimizer of φ

over C. The second problem in real-world applications comes from the fact that the
constraints, derived from the real-world problem, may not be consistent (e.g., because
they come from noisy measurements), and so C is empty.
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Similar criticism applies actually to many constrained-minimization-seeking al-
gorithms for which asymptotic convergence results are available. In the SM, both of
these objections can be handled by replacing the notion of a fixed feasible set C by
that of a nonnegative real-valued proximity function ProxC : Ω → R+. This func-
tion serves as an indicator of how incompatible a vector x is with the constraints.
In such a formulation, the merit of the actual output x of any algorithm is indi-
cated by the smallness of the two numbers ProxC(x) and φ(x). For the formula-
tion of (1), we would define ProxC so that its range is the ray of nonnegative real
numbers with ProxC(x) = 0 if, and only if, x ∈ C, and then the constrained mini-
mization problem (1) is precisely that of finding an x that is a minimizer of φ(x) over
{x | ProxC(x) = 0}. The above discussion allows us to do away with the nonempti-
ness assumption and also to compare the merits of actual outputs of algorithms that
only approximate the aim of the constrained minimization problem.

The recently invented SM incorporates the ideas of the previous paragraph in its
very foundation and formulates the problem with the function ProxC instead of the
set C. The underlying idea of SM is that many iterative algorithms that produce out-
puts x for which ProxC(x) is small are strongly perturbation resilient in the sense
that, even if certain kinds of changes are made at the end of each iterative step, the al-
gorithm still produces an output x′ for which ProxC(x′) is not larger. This property is
exploited by using permitted changes to steer the algorithm to an output that has not
only a small ProxC value, but has also a small φ value. The algorithm that incorpo-
rates such a steering process is referred to as the superiorized version of the original
iterative algorithm. The main practical contribution of SM is the automatic creation
of the superiorized version, according to a given objective function φ, of just about
any iterative algorithm that aims at producing an x for which ProxC(x) is small.

Nevertheless, in order to carry out our comparative study, we restrict our attention
here to a subset of all possible problems to which not only the SM but also the PSM
is applicable. We assume that we are given a family of constraints {C�}L�=1, where
each set C� is a nonempty closed convex subset of RJ such that

C =
L⋂

�=1

C� (3)

is a nonempty subset of Ω and that it is the feasible set C of (1). Under these assump-
tions, we illustrate the application of the SM by the superiorization of feasibility-
seeking projection methods, see, e.g., [18–22] and the recent monograph [23]. Such
methods use projections onto the individual sets C� in order to generate a sequence
{xk}∞k=0 that converges to a point x∗ ∈ C. Therefore, contrary to the PSM, one does
not need to assume that C is a “simple to project onto” set, but rather that the in-
dividual sets C� have this property. The latter is indeed often the case, such as, for
example, where the sets C� are hyperplanes or half-spaces onto which we can project
easily, but their intersection is not “simple to project onto.”

The SM is accurately presented in Sect. 4 below. However, the discussion above
is sufficient to explain why we chose the PSM and the SM for our comparative
study. Namely, both methods interlace objective-function-reduction steps with steps
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oriented toward feasibility. But exactly here lies a big difference between the two ap-
proaches. The PSM requires that feasibility is regained after subgradient nonascent
steps by performing a projection onto C, whereas in the SM the feasibility-seeking
projection method proceeds by projecting (in a well-defined algorithmically struc-
tured regime dictated by the specific projection method) onto the individual sets C�

and not onto the whole feasible set C. This has a potentially great computational
advantage.

3 Superiorization-Related Previous Work

The superiorization methodology was first proposed in [7], although without using
the term superiorization. In that work, perturbation resilience (without using this
term) was proved for the general class of string-averaging projection (SAP) methods,
see [8–12], that use orthogonal projections and relate to consistent constraints. Sub-
sequent investigations and developments were done in [13–17]. In [13], the method-
ology was formulated over general problem structures that enabled rigorous analysis
and revealed that the approach is not limited to feasibility and optimization. In [14],
perturbation resilience was analyzed for the class of block-iterative projection (BIP)
methods, see [18–22], and applied in this manner. In [15], the advantages of supe-
riorization for image reconstruction from a small number of projections was stud-
ied, and in [16] two acceleration schemes based on (symmetric and nonsymmetric)
BIP methods were proposed and experimented with. In [17], total variation superi-
orization schemes in proton computed tomography (pCT) image reconstruction were
investigated.

In [24], we introduced the notion of ε-compatibility into the superiorization ap-
proach in order to handle inconsistent constraints. This enabled us to close the logical
discrepancy between the assumption of consistency of constraints and the actual ex-
perimental work done previously. We also introduced there the new notion of strong
perturbation resilience, which generalizes the previously used notion of perturba-
tion resilience. Algorithmically, the new superiorized algorithm introduced there (and
used here) is different from all previous ones in that it uses the notion of nonascending
direction and in that it allows several perturbation steps for each feasibility-seeking
step, an aspect that has practical advantages.

In [25], superiorization was applied to the expectation maximization (EM) algo-
rithm instead of the feasibility-seeking projection methods that were used in superior-
ization previously. The approach was implemented there to solve an inverse problem
of bioluminescence tomography (BLT) image reconstruction. Such EM superioriza-
tion was investigated further and applied to a problem of Single Photon Emission
Computed Tomography (SPECT) in [26]. Most recently, in [27], the SM was fur-
ther investigated numerically, along with many projection methods for the feasibility
problem and for the best approximation problem.

Our superiorization methodology should be distinguished from the works of Helou
Neto and De Pierro [28, 29], of Nedić [30], Ram, Nedić, and Veeravalli [31], and
of Nurminski [32–35]. The lack of cross-referencing between some of these papers
shows that, in spite of the similarities between their approaches, their results were
apparently reached independently.
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There are various differences among the works mentioned in the previous para-
graph, differences in overall setup of the problems, differences in the assumptions
used for the various convergence results, etc. This is not the place for a full review
of all these differences. But we wish to clarify the fundamental difference between
them and the SM. The point is that when two activities are interlaced, here, feasibil-
ity steps and objective function reduction steps, then once the process is running all
such methods look alike. From looking at the iterative formulas, one cannot tell if (a)
“feasibility steps are interlaced into an iterative gradient scheme for objective func-
tion minimization” or if (b) “objective function reduction steps are interlaced into an
iterative projections scheme for feasibility-seeking.” The common thread of all works
mentioned in the previous paragraph is that they fall into the category (a), while the
SM is of the kind (b). In all methods of category (a) the condition that is needed to
guarantee convergence to a constrained minimum point is that the diminishing step-
sizes αk → 0 as k → ∞ must be such that

∑∞
k=0 αk = +∞. In contrast, since the

feasibility-seeking projection method is the “leader” of the overall process in the SM,
we must have that the perturbations (that do the objective function reduction) will
use diminishing step-sizes βk → 0 as k → ∞ but such that

∑∞
k=0 βk < ∞. The lat-

ter condition guarantees the perturbation resilience of the original feasibility-seeking
projection method so that, regardless of the interlaced objective function reduction
steps, the overall process converges to a feasible, or ε-compatible, point of the con-
straints.

Yet another fundamental difference between the superiorization methodology and
the algorithms of category (a) mentioned above is that those algorithms perform the
interlaced objective function descent and feasibility steps alternatingly according to a
rigid predetermined scheme, whereas in the superiorization methodology the activa-
tion of these steps and the decisions whether to keep an iterate or discard it are done
inside the superiorized algorithm in a controlled and automatically supervised man-
ner. Thus, the superiorization methodology has the following features not present
in the algorithms of category (a) mentioned above: (i) it conducts iterations of a
feasibility-seeking projection method which is strongly perturbation resilient (as de-
fined below), (ii) it interlaces objective function nonascent steps into the process in
a controlled and automatically supervised manner, (iii) it is not known to guarantee
convergence to a solution of the constrained minimization problem, and it might (we
do not know if this is so or not) instead only be shown to lead to a feasible point
whose objective function value is less than that of a feasible point that would have
been reached by the same feasibility-seeking projection method without the pertur-
bations exercised by the superiorized algorithm.

The adaptive steepest descent projections onto convex sets (ASD-POCS) algo-
rithm described in [36] has some similarities to the SM. However, it is not as general
as the SM; see [24] for a comparison.

4 The Superiorization Methodology

In this section we present a restricted version of the SM of [24] adapted to our prob-
lem (1). As discussed in Sect. 2, we associate with the feasible set C in (1) a proximity
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function ProxC : Ω → R+ that is an indicator of how incompatible an x ∈ Ω is with
the constraints. For any given ε > 0, a point x ∈ Ω for which ProxC(x) ≤ ε is called
an ε-compatible solution for C. We further assume that we have, for the C in (1),
a feasibility-seeking algorithmic operator AC : RJ → Ω , with which we define the
following basic algorithm.

The Basic Algorithm

(B1) Initialization: Choose an arbitrary x0 ∈ Ω ,
(B2) Iterative Step: Given the current iterate xk , calculate the next iterate xk+1 by

xk+1 = AC

(
xk

)
. (4)

The following definition helps to evaluate the output of the Basic Algorithm upon
termination by a stopping rule.

Definition 4.1 (The ε-output of a sequence) Given C ⊆ R
J , a proximity function

ProxC : Ω → R+, a sequence {xk}∞k=0 ⊂ Ω and an ε > 0, then an element xK of
the sequence which has the properties: (i) ProxC(xK) ≤ ε, and (ii) ProxC(xk) > ε

for all 0 ≤ k < K , is called an ε-output of the sequence {xk}∞k=0 with
respect to the pair (C,ProxC). We denote it by O(C,ε, {xk}∞k=0) = xK .

Clearly, an ε-output O(C,ε, {xk}∞k=0) of a sequence {xk}∞k=0 might or might not
exist, but if it does, then it is unique. If {xk}∞k=0 is produced by an algorithm intended
for the feasible set C, such as the Basic Algorithm, without a termination criterion,
then O(C,ε, {xk}∞k=0) is the output produced by that algorithm when it includes the
termination rule to stop when an ε-compatible solution for C is reached.

Definition 4.2 (Strong perturbation resilience) Assume that we are given a C ⊆ Ω ,
a proximity function ProxC , an algorithmic operator AC and an x0 ∈ Ω . We use
{xk}∞k=0 to denote the sequence generated by the Basic Algorithm when it is initial-
ized by x0. The Basic Algorithm is said to be strongly perturbation re-
silient iff the following hold:

(i) there exists an ε > 0 such that the ε-output O(C,ε, {xk}∞k=0) exists for every
x0 ∈ Ω ;

(ii) for every ε > 0, for which the ε-output O(C,ε, {xk}∞k=0) exists for every x0 ∈ Ω ,
we have also that the ε′-output O(C,ε′, {yk}∞k=0) exists for every ε′ > ε and for
every sequence {yk}∞k=0 generated by

yk+1 = AC

(
yk + βkv

k
)

for all k ≥ 0, (5)

where the vector sequence {vk}∞k=0 is bounded, and the scalars {βk}∞k=0 are such
that βk ≥ 0 for all k ≥ 0 and

∑∞
k=0 βk < ∞.

Definition 4.3 (Bounded convergence) Assume that we are given a C ⊆R
J , a prox-

imity function ProxC , and an algorithmic operator AC : RJ → Ω . Then the Basic
Algorithm is said to be convergent over Ω iff for every x0 ∈ Ω , there exists
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the limit limk→∞ xk = y(x0) and y(x0) ∈ Ω . It is said to be boundedly con-
vergent over Ω iff, in addition, there exists a γ ≥ 0 such that ProxC(y(x0)) ≤ γ

for every x0 ∈ Ω .

Next theorem, which gives sufficient conditions for strong perturbation resilience
of the Basic Algorithm, has been proved in [24, Theorem 1] (in different wording).

Theorem 4.1 Assume that we are given a C ⊆ R
J , a proximity function ProxC , and

an algorithmic operator AC : RJ → Ω . If AC is nonexpansive and is such that it
defines a boundedly convergent Basic Algorithm and if the proximity function ProxC

is uniformly continuous, then the Basic Algorithm defined by AC is strongly pertur-
bation resilient.

Along with the C ⊆ R
J , we look at the objective function φ : RJ → R, with

the convention that a point in R
J for which the value of φ is smaller is considered

superior to a point in R
J for which the value of φ is larger. The essential idea of the

SM is to make use of the perturbations of (5) to transform a strongly perturbation
resilient algorithm that seeks a constraints-compatible solution for C into one whose
outputs are equally good from the point of view of constraints-compatibility, but are
superior (not necessarily optimal) according to the objective function φ.

This is done by producing from the Basic Algorithm another algorithm, called its
superiorized version, that makes sure not only that the βkv

k are bounded perturba-
tions, but also that φ(yk +βkv

k) ≤ φ(yk) for all k. To do so, we use the next concept,
closely related to the concept of “descent direction.”

Definition 4.4 Given a function φ : RJ → R and a point y ∈R
J , we say that a vector

d ∈R
J is nonascending for φ at y iff ‖d‖ ≤ 1 and there is a δ > 0 such that

for all λ ∈ [0, δ], we have φ(y + λd) ≤ φ(y). (6)

Obviously, the zero vector is always such a vector, but for superiorization to work,
we need a sharp inequality to occur in (6) frequently enough.

The Superiorized Version of the Basic Algorithm assumes that we have available
a summable sequence {η�}∞�=0 of positive real numbers (for example, η� = a�, where
0 < a < 1) and it generates, simultaneously with the sequence {yk}∞k=0 in Ω , se-
quences {vk}∞k=0 and {βk}∞k=0. The latter is generated as a subsequence of {η�}∞�=0,
resulting in a nonnegative summable sequence {βk}∞k=0. The algorithm further de-
pends on a specified initial point y0 ∈ Ω and on a positive integer N . It makes use
of a logical variable called loop. The superiorized algorithm is presented next by its
pseudo-code.

Superiorized Version of the Basic Algorithm

1. set k = 0
2. set yk = y0

3. set � = −1
4. repeat
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5. set n = 0
6. set yk,n = yk

7. while n < N

8. set vk,n to be a nonascending vector for φ at yk,n

9. set loop = true
10. while loop
11. set � = � + 1
12. set βk,n = η�

13. set z = yk,n + βk,nv
k,n

14. if φ(z) ≤ φ(yk) then
15. set n = n + 1
16. set yk,n = z

17. set loop = false
18. set yk+1 = AC(yk,N )

19. set k = k + 1

Theorem 4.2 Any sequence {yk}∞k=0, generated by the Superiorized Version of
the Basic Algorithm, satisfies (5). Further, if, for a given ε > 0, the ε-output
O(C,ε, {xk}∞k=0) of the Basic Algorithm exists for every x0 ∈ Ω , then every sequence
{yk}∞k=0, generated by the Superiorized Version of the Basic Algorithm, has an ε′-
output O(C,ε′, {yk}∞k=0) for every ε′ > ε.

This theorem follows from the analysis of the behavior of the Superiorized Version
of the Basic Algorithm in [24]. In other words, the Superiorized Version produces
outputs that are essentially as constraints-compatible as those produced by the origi-
nal not superiorized algorithm. However, due to the repeated steering of the process
by lines 7 to 17 toward reducing the value of the objective function φ, we can expect
that the output of the Superiorized Version will be superior (from the point of view
of φ) to the output of the original algorithm.

5 A Computational Demonstration

5.1 The x-Ray CT Problem

The fully discretized model in the series expansion approach to the image reconstruc-
tion problem of x-ray computerized tomography (CT) is formulated in the following
manner. A Cartesian grid of square picture elements, called pixels, is introduced into
the region of interest so that it covers the whole picture that has to be reconstructed.
The pixels are numbered in some agreed manner, say from 1 (top left corner pixel)
to J (bottom right corner pixel).

The x-ray attenuation function is assumed to take a constant value xj throughout
the j th pixel for j = 1,2, . . . , J . Sources and detectors are assumed to be points, and
the rays between them are assumed to be lines. Further, assume that the length of
intersection of the ith ray with the j th pixel, denoted by ai

j , for i = 1,2, . . . , I, j =
1,2, . . . , J , represents the weight of the contribution of the j th pixel to the total
attenuation along the ith ray.
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The physical measurement of the total attenuation along the ith ray, denoted by bi ,
represents the line integral of the unknown attenuation function along the path of the
ray. Therefore, in this fully discretized model, the line integral turns out to be a finite
sum, and the model is described by a system of linear equations

J∑
j=1

xja
i
j = bi, i = 1,2, . . . , I. (7)

In matrix notation we rewrite (7) as

Ax = b, (8)

where b ∈ R
I is the measurement vector, x ∈ R

J is the image vector, and the I × J

matrix A = (ai
j ) is the projection matrix. See [37], especially Sect. 6.3, for a complete

treatment of this subject.

5.2 The Algorithms that We Use

In this section we describe the PSM and SM algorithms specifically used in our
demonstration. We applied both algorithms to solve the fully discretized model in
the series expansion approach to the image reconstruction problem of x-ray CT, for-
mulated in the previous section and represented by the optimization problem

minimize
{
φ(x) | Ax = b and 0 ≤ x ≤ 1

}
. (9)

The box constraints are natural for this problem: If xj represents the linear attenu-
ation coefficient, measured in cm−1, at a medically used x-ray energy spectrum in the
j th pixel, then the box constraints 0 ≤ x ≤ 1 are reasonable for tissues in the human
body; see Table 4.1 of [37]. Hence, for the image reconstruction problem of x-ray
CT, we define Ω by

Ω = {
x ∈R

J | 0 ≤ x ≤ 1
}
. (10)

We note that this Ω is bounded.
The choice of C in (1) is of the type specified in (3), with L = I + 1, Ci = {x ∈

R
J | 〈ai, x〉 = bi} for i = 1,2, . . . , I and CI+1 = Ω . Furthermore, since in the exper-

iment reported below, we start with a specific image vector x ∈ Ω and calculate from
it the measurement vector b ∈ R

I using (7), we know that C is a nonempty subset
of Ω , which is the requirement stated below (3).

For any such C, we define ProxC : Ω → R+ by

ProxC(x) =
√√√√ I∑

i=1

(
bi − 〈

ai, x
〉)2

. (11)

Note that this proximity function ProxC is uniformly continuous and thus satisfies
the condition stated for it in Theorem 4.1.
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Our choice for the objective function φ is the total variation (TV) of the image
vector x. Denoting the G × H image array X (GH = J ) obtained from the image
vector x by Xg,h = x(g−1)H+h for 1 ≤ g ≤ G and 1 ≤ h ≤ H , we use

φ(x) = TV(X) =
G−1∑
g=1

H−1∑
h=1

√
(Xg+1,h − Xg,h)2 + (Xg,h+1 − Xg,h)2. (12)

5.2.1 The Projected Subgradient Method

We implemented the PSM with the choice of C and the objective function φ described
above. We used the PSM recursion formula (2) and adopted a nonsummable dimin-
ishing step-length rule of the form tk = γk/‖φ′(xk)‖, where γk ≥ 0, limk→∞ γk = 0,
and

∑∞
k=0 γk = ∞.

The PSM Algorithm

(P1) Initialization: Select a point x0 ∈ R
J , select integers K and M , use two real

number variables curr and prev, and set curr = φ(x0) and prev = curr .
(P2) Iterative step: Given the current iterate xk , calculate the next one as follows:

(P2.1) Calculate a subgradient of φ at xk , i.e., φ′(xk) ∈ ∂φ(xk), a step-size
tk = k−1/4/‖φ′(xk)‖2, and the vector

qk = xk − tkφ
′(xk

)
. (13)

(P2.2) Calculate the next iterate as the projection of qk onto C by solving

xk+1 = arg min
x

{
1

2

∥∥x − qk
∥∥2 | Ax = b and 0 ≤ x ≤ 1

}
. (14)

(P2.3) If φ(xk+1) ≤ curr , then curr = φ(xk+1).
(P3) Stopping rule: If k modK = 0 (i.e., k is divisible by K), then: If prev −

curr < prev/M then stop. Otherwise, prev = curr and go to (P2).

That the PSM algorithm converges to a solution of (1) follows from [2, Sect. 3.2.3],
in particular, from Theorem 3.2.2 therein, provided that φ is convex and locally Lip-
schitz continuous and C is closed and convex. The latter is indeed the case for the C

in (9). The convexity of the φ of (12) follows from the end of the proof of Proposi-
tion 1 in [38]. Its Lipschitz continuity on the whole space R

J follows from the fact
that the TV function can be rewritten as

TV(X) =
G−1∑
g=1

H−1∑
h=1

‖Ag,hX‖2, (15)

where Ag,h is a square matrix having only two nonzero rows, with the first nonzero
row containing only two nonzero elements 1 and −1 that correspond to the vari-
ables Xg+1,h and Xg,h, respectively, and the second nonzero row containing only
two nonzero elements 1 and −1 that correspond to the variables Xg,h+1 Xg,h, re-
spectively.
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In our implementation we solved problem (14), in step (P2.2) above, by consider-
ing its dual

maximize
{
f (λ) | λ ∈ R

I
}
, (16)

where

f (λ) = 1

2

∥∥qk − AT λ − PCI+1

(
qk − AT λ

)∥∥2 − 1

2

∥∥qk − AT λ
∥∥2

− 〈λ,b〉 + 1

2

∥∥qk
∥∥2

. (17)

The optimal point x∗k of (14) is then

x∗k = PCI+1

(
qk − AT λ∗k

)
, (18)

where λ∗k is the optimal solution of (16). To find λ∗k , we minimized −f (λ) using
the Optimal Method of Nesterov [39], as generalized by Güler [40, p. 188], whose
generic description for unconstrained minimization of a convex function θ(λ), which
is continuously differentiable with Lipschitz continuous gradient, is as follows.

(N1) Initialization: Select a μ0 ∈ R
J and a positive α−1 and put λ−1 = μ0, β0 = 1,

and k = 0.
(N2) Iterative Step: Given λk−1, μk , αk−1, and βk :

(N2.1) Calculate the smallest index s ≥ 0 for which the following inequality
holds:

θ
(
μk

) − θ
(
μk − 2−sαk−1∇θ

(
μk

)) ≥ 2−s−1αk−1
∥∥∇θ

(
μk

)∥∥2
. (19)

(N2.2) Calculate the next iterate by

αk = 2−sαk−1 and λk = μk − αk∇θ
(
μk

)
, (20)

and update

βk+1 =
(

1

2
+ 1

2

√
4β2

k + 1

)
(21)

and

μk+1 = λk + βk − 1

βk+1

(
λk − λk−1). (22)

When a stopping rule applies, then the point λk is the output of the method.
In the reported experiments, we used the starting points x0 in the PSM Algorithm

and λ−1 = μ0 in (N1) above to be zero vectors. In the initialization step of the PSM
Algorithm, we selected K = 10 and M = 5000. In (N1), we chose α−1 = 10.

5.2.2 The Superiorization Method

Our selected choice for the operator AC in the Basic Algorithm as well as in the
Superiorized Version of the Basic Algorithm, as described in Sect. 4, is based on
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an algebraic reconstruction technique (ART), see [37, Chap. 11]. Specifically, for
i = 1,2, . . . , I , we define the operators Ui : RJ → R

J by

Ui(x) = x + bi − 〈ai, x〉
‖ai‖2

ai. (23)

Defining the projection operator onto the unit box Ω by Q : RJ → Ω

(
Q(x)

)
j

=
⎧⎨
⎩

xj if 0 ≤ xj ≤ 1,

0 if xj < 0,

1 if 1 < xj ,

(24)

for j = 1,2, . . . , J , we specify the algorithmic operator AC : Ω → Ω by

AC(x) = QUI · · ·U2U1(x). (25)

Since the individual Uis as well as the Q are clearly nonexpansive operators, the
same is true for AC .

By well-known properties of ART (see, for example, Sects. 11.2 and 15.8 of [37]),
the Basic Algorithm with this algorithmic operator is convergent over Ω , and, in
fact, for every x0 ∈ Ω , the limit y(x0) is in C. It follows that, for every x0 ∈ Ω ,
ProxC(y(x0)) = 0, and so the Basic Algorithm is boundedly convergent. Accord-
ing to Theorem 4.1, this, combined with the facts that AC is nonexpansive and the
proximity function ProxC is uniformly continuous, implies that the Basic Algorithm
defined by AC is strongly perturbation resilient.

The following uses the convergence of the Basic Algorithm to an element of C and
Theorem 2. Since for all ε > 0, the ε-output O(C,ε, {xk}∞k=0) of the Basic Algorithm
is defined for every x0 ∈ Ω , we also have that every sequence {yk}∞k=0 generated by
the Superiorized Version of the Basic Algorithm has an ε′-output O(C,ε′, {yk}∞k=0)

for every ε′ > 0. This means that for the specific type of C that is used in our compar-
ative study, the Superiorized Version of the Basic Algorithm is guaranteed to produce
an ε′-compatible output for any ε′ > 0 and any initial point y0 ∈ Ω .

The specific choices made when running the Superiorized Version of the Basic
Algorithm for our comparative study were the following. We selected η� = 0.999�,
y0 to be the zero vector, and N = 9. All these choices we made are based on auxil-
iary experiments (not included in this paper) that helped determine optimal parame-
ters for the data-set discussed in Sect. 5.3. In addition, we need to specify how the
nonascending vector vk,n is selected in line 8 of the Superiorized Version of the Basic
Algorithm. We use the method specified in [24] (especially Sect. II.D, the paragraph
following Eq. (12) and Theorem 2 in the Appendix). Specifically, we define another
vector w and set vk,n to be the zero vector if ‖w‖ = 0 and − w

‖w‖ otherwise. The com-

ponents of w are computed by wj = ∂φ
∂xj

(yk,n) if the partial derivative can be calcu-
lated without a numerical difficulty and wj = 0 otherwise, for 1 ≤ j ≤ J . Looking
at (12), we see that formally the partial derivative wj = ∂φ

∂xj
(yk,n) is the sum of at

most three fractions; the phrase “numerical difficulty” in the previous sentence refers
to the situation where in one of these fractions the denominator has an absolute value
less than 10−20.
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5.3 The Computational Result

The computational work reported here was done on a single machine using a single
CPU, an Intel i5-3570K 3.4 GHz with 16 GB RAM using the SNARK09 software
package [41, 42]; the phantom, the data, the reconstructions and displays were all
generated within this same framework. In particular, this implies that differences in
the reported reconstruction times are not due to the different algorithms being imple-
mented in different environments.

Figure 1 shows the phantom used in our study, which is a 485 × 485 digitized
image whose TV is 984. The phantom corresponds to a cross-section of a human
head (based on [37, Fig. 4.6]). It is represented by a vector with 235,225 compo-
nents, each standing for the average x-ray attenuation coefficient within a pixel. Each
pixel is of size 0.376 × 0.376 mm2. The values of the components are in the range
of [0,0.6241749], however, the display range used here was much smaller, namely
[0.204,0.21675]. The mapping between the two ranges is such that any value below
0.204 is shown as black and any value above 0.21675 is shown as white with a linear
mapping in-between. We used this display window for all images presented here.

Data were collected by calculating line integrals through the digitized head phan-
tom in Fig. 1 using 60 sets of equally rotated (in 3 degrees increments) parallel lines,
with lines in each set spaced at 0.752 mm from each other. Each line integral gives
rise to a linear equation and represents a hyperplane in R

J . The phantom itself lies in
the intersection of all the hyperplanes that are associated with these lines, and it also
satisfies the box constraints in (10). The total number of linear equations is 18,524,

Fig. 1 The head phantom. The value of its TV is 984. Its tomographic data was obtained for 60 views
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Fig. 2 Reconstructions of the head phantom of Fig. 1. (a) The image reconstructed by the PSM has
TV = 919 and was obtained after 2217 seconds. (b) The image reconstructed by the SM has TV = 873
and was obtained after 102 seconds
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Table 1 Performance
comparison of the PSM and the
SM when producing the
reconstructions in Fig. 2

TV value Time (seconds)

PSM 919 2217

SM 873 102

making our problem underdetermined with 235,225 unknowns (the intersection of all
the hyperplanes is in an at least 216,701-dimensional subspace of R235,225). In the
comparative study, we first applied the PSM and then the SM to these data as follows.

The PSM was implemented as described in Sect. 5.2.1. In particular, it started
with the zero vector, for which ProxC(x0) = 326. It was stopped according to the
Stopping Rule (P3), the iteration number at that time was 815, and the value of the
proximity function was ProxC(x815) = 0.0422, which is very much smaller than the
value at the initial point. The computer time required was 2217 seconds. The TV of
the output was 919, which is less than that of the phantom, indicating that the PSM is
performing its task of producing a constraints-compatible output with a low TV. This
output is shown in Fig. 2(a).

We used the Superiorized Version of the Basic Algorithm, as described in
Sect. 5.2.2 to generate a sequence {yk}∞k=0 until it reached O(C,0.0422, {yk}∞k=0)

and considered that to be the output of the SM. We know that this output must exist
for our problem and that its constraints-compatibility will not be greater than that of
the output of the PSM. The computer time required to obtain this output was 102 sec-
onds, which is over twenty times shorter than what was needed by the PSM to get its
output. The TV of the SM output was 876, which is also less than that of the output
of PSM. The SM output is shown in Fig. 2(b).

As summarized in Table 1, with the stopping rule that guarantees that the output of
the SM is at least as constraints-compatible as the output of the PSM, the SM showed
superior efficacy compared to the PSM: it obtained a result with a lower TV value at
less than one twentieth of the computational cost.

6 Conclusions

The superiorization methodology (SM) allows the conversion of a feasibility-seeking
algorithm, designed to find an ε-compatible solution of the constraints, into a superi-
orized algorithm that inserts, into the feasibility-seeking algorithm, objective function
reduction steps while preserving the guaranteed feasibility-seeking nature of the algo-
rithm. The superiorized algorithm interlaces objective function nonascent steps into
the original process in an automatic manner. In case of strong perturbation resilience
of the original feasibility-seeking algorithm, mathematical results indicate why the
superiorized algorithm will be efficacious for producing an ε-compatible solution
output with a low value of the objective function.

We have presented an example for which the SM finds a better solution to a con-
strained minimization problem than the projected subgradient method (PSM), and
in significantly less computation time. This finding is understandable in view of the
nature of how the methods interlace feasibility-oriented activities with optimization
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activities. While the PSM requires a projection onto the feasible region of the con-
strained minimization problem, the SM needs to do only projections onto the indi-
vidual constraints whose intersection is the feasible region. We demonstrated this
experimentally on a large-sized application that is modeled, and needs to be solved,
as a constrained minimization problem.
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Feasibility-Seeking and Superiorization Algorithms Applied
to Inverse Treatment Planning in Radiation Therapy

Ran Davidi, Yair Censor, Reinhard W. Schulte, Sarah Geneser,
and Lei Xing

Abstract. We apply the recently proposed superiorization methodology (SM)

to the inverse planning problem in radiation therapy. The inverse planning

problem is represented here as a constrained minimization problem of the to-
tal variation (TV) of the intensity vector over a large system of linear two-sided

inequalities. The SM can be viewed conceptually as lying between feasibility-

seeking for the constraints and full-fledged constrained minimization of the
objective function subject to these constraints. It is based on the discovery

that many feasibility-seeking algorithms (of the projection methods variety)

are perturbation-resilient, and can be proactively steered toward a feasible so-
lution of the constraints with a reduced, thus superiorized, but not necessarily

minimal, objective function value.

December 3, 2013

1. Introduction

Computationally demanding numerical minimization techniques are often used
in optimizing the treatment plan of different types of intensity modulated radia-
tion therapy (IMRT), for example, in volumetric-modulated arc therapy (VMAT).
However, some commonly employed objective functions and corresponding min-
imization techniques are not necessarily the most appropriate for achieving the
desired radiation dose distribution behavior in the patient. This disconnect occurs
because minimal solutions to current minimization formulations are not guaran-
teed to provide the desired dose coverage, conformality, or homogeneity. Therefore,
the considerable computational cost associated with some of these minimization
techniques may not be justified.

We propose to apply the recently developed novel superiorization method (SM)
that improves computational tractability by aiming at a solution that is guaran-
teed to satisfy the IMRT planning constraints and results in a reduced, but not
necessarily minimal, value of the objective function.
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The SM can be viewed conceptually as lying between feasibility-seeking for
the constraints and full-fledged constrained minimization of the objective function
subject to these constraints. It is based on the discovery that many feasibility-
seeking algorithms (of the projection methods variety) are perturbation-resilient,
and can be proactively steered toward a feasible solution of the constraints with a
reduced, but not necessarily minimal, objective function value.

The SM is, thus, capable of producing “superior feasible solutions” by em-
ploying less-demanding feasibility-seeking projection methods. Therefore, it may
replace current computationally demanding constrained minimization methods, and
potentially lead to shorter computational times and improved dose distributions.

The paper is laid out as follows. In Section 2 we briefly acquaint the reader with
the inverse problem of radiation therapy treatment planning and the mathematical
model that we use. In Section 3 a short review of the SM is given, and, in Section
4, we present an illustrative example how SM can be applied to planning a prostate
cancer IMRT case. Finally, in Section 5 we provide our conclusions.

2. The inverse problem of radiation therapy treatment planning

Inverse planning is at the heart of intensity modulated treatment procedures
and critically determines the quality of the resulting treatment plan. Usually, the
radiation oncologist in charge defines the boundaries of the clinical and gross tumor
volumes and organs at risk (OAR) for radiation late effects and prescribes the
minimum and maximum target doses, threshold doses and/or volumes not to be
exceeded in OAR and gives importance factors for each. These constraints give
rise to a mathematical model that requires the solution of an inverse problem. A
solution method is run to find a treatment plan consisting of intensities and timing
of different beam segments which best matches all the input criteria.

However, as practiced now, the therapeutic capacity of these applications is
underutilized because of the computing performance of some of the currently used
minimization methods. In this work, we suggest to use the SM to reach an accept-
able treatment plan. Let us first briefly describe the inverse problem at hand; for
more technical details related to different types of IMRT, the reader may consult
review articles, such as, [A, B, C], to name but a few.

IMRT-type techniques are currently the most advanced form of external ra-
diation therapy. Different from its predecessor, 3D conformal radiation therapy
(3DCRT), the physician needs to clearly define the objective of the treatment plan
by specifying dose and/or volume constraints for the planning target volume (PTV)
and OAR that aims at maximum tumor cell killing and minimum harm to the pa-
tient’s normal tissues. The treatment plan resulting from solving a corresponding
mathematical problem defines multiple field directions and the movement of com-
puter controlled pairs of multileaf collimator (MLC) leaves for each direction.

The pairs of MLC leaf positions dynamically change during treatment and
are physically controlled plates that move during treatment and help modulate
the beam to achieve the objectives of the physician-defined treatment plan. The
beam, therefore, can be conceptually subdivided to a two-dimensional grid of beam
subunits called beamlets. Finding a deliverable treatment plan comprised of beam
apertures and weights for the multiple directions and possible locations of the MLCs
is the goal of the inverse treatment planning problem. In the next paragraph we
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discuss a typical model for the inverse treatment planning problem that leads to a
constrained minimization problem, which in turn, fits the SM framework.

Denote the physician’s prescribed dose distribution to the patient by a dose vec-
tor d = (dj)J

j=1 ∈ RJ where dj is the dose in voxel j of the fully-discretized patient’s
cross-section. The dose distribution d is known to have a linear relationship with
the intensities of the beamlets, denoted by an intensity vector x = (xi)I

i=1 ∈ RI ,
such that xi is the intensity of the beamlet i. The inversion problem can, therefore,
be formulated as a linear system of equations

(2.1) d = Ax,

where A is the J× I dose matrix that maps any intensity of beamlets vector x onto
a dose in voxels vector d. Here I is the total number of beamlets and J is the total
number of voxels.

Further assume that there are S structures in the patient’s cross-section, for
s = 1, 2, . . . , S, and let Os be the set of voxel indices that belong to a structure s

(2.2) Os = {js,1, js,2, . . . js,m(s)},

where m(s) is the number of voxels in the s structure. Then the system matrix A
can be partitioned into blocks

(2.3) A =


A1

A2

...
AS

 ,

so that a submatrix As will contain the rows of A whose indices appear in Os,
and d(s) will be the subvector of d whose component indices appear in Os, and the
system (2.1) becomes

(2.4)


A1

A2

...
AS

x =


d(1)

d(2)

...
d(S)

 .

Following a well-trodden path in this area, with roots in [E] and [F], we replace
the system (2.1) by a more flexible model in which we ask the physician to specify
lower- and upper-dose bounds vectors, d and d, respectively, on all voxels in the
respective structures. For a structure s that is an OAR we define

(2.5) d(s) ≡ d(s),

and for any target structures s such as the PTV we define

(2.6) d(s) ≡ d(s).

Hence, for an s that is an OAR we obtain

(2.7) 0 ≤ Asx ≤ d(s),

and for a target structure s

(2.8) d(s) ≤ Asx ≤ e(s),
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where e(s) is an additional clinically-specified upper-bound subvector on the target.
Denoting by at the tth row of the matrix A, the inequalities of (2.7) are, component-
wise,

(2.9) 0 ≤
〈
ajs,` , x

〉
≤ d(s), for all ` = 1, 2, . . . ,m(s),

where js,` ∈ Os, for a structure s, and the inequalities of (2.8) are,

(2.10) d(s) ≤
〈
ajs,` , x

〉
≤ e(s), for all ` = 1, 2, . . . ,m(s),

where 〈·, ·〉 stands for the inner product.
This leads to a system of linear inequalities

(2.11)


d(1)

d(2)

...
d(S)

 ≤


A1

A2

...
AS

x ≤


d(1)

d(2)

...
d(S)


which serves as the constraints set for the inverse problem modeled as a minimiza-
tion problem. For the objective function φ we use the total variation (TV) of the
intensity vector x, given by

(2.12) φ (X) = TV (X) =
U−1∑
u=1

V−1∑
u=1

√
(xu+1,v − xu,v)2 + (xu,v+1 − xu,v)2,

where the two-dimensional array is obtained from the intensity vector x by
X = {xu,v} U, V

u=1, v=1 where u and v are integers (and uv = J). The use of TV
minimization in radiation therapy treatment planning was suggested by Zhu et
al. in [G] but they used there a different modeling approach that led them to a
minimization problem, rather than a feasibility problem like ours in (2.11). They
handled the TV minimization by using it to regularize their objective function and
applied an exact constrained minimization algorithm, which resulted in a large
computational burden.

Our approach leads us to the constrained minimization problem (3.1) with
(2.12) as the objective and (2.11) as the constraints.

3. A short review of the SM

The superiorization methodology (SM) of [H, I] is intended for nonlinear con-
strained minimization (CM) problems of the form

(3.1) minimize {φ(x) | x ∈ C} ,

where φ : RJ → R is an objective function and C ⊆ Θ ⊆ RJ is a given feasible set
defined by a family of constraints {Ci}Ii=1, where each set Ci is a nonempty closed
convex subset of RJ , so that C = ∩I

i=1Ci 6= ∅.
In a nutshell, the new paradigm of superiorization lies between feasibility-

seeking and CM. It is not quite trying to solve the full fledged CM; rather, the
task is to find a feasible point that is superior (with respect to the objective func-
tion value) to one returned by a feasibility-seeking only algorithm.

The SM could be beneficial for a problem for which an exact CM algorithm has
not yet been discovered, or when existing exact optimization algorithms are very
time consuming or require too much computer resources for realistic large problems.
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If, in such cases, there exist (space- and time-) efficient iterative feasibility-
seeking projection methods that provide non-optimal but constraints-compatible
solutions, then they can be turned by the SM into methods that will be practically
useful from the point of view of the function to be optimized. Examples of such
situations are given in [H, I].

We associate with the feasible set C a proximity function ProxC : Θ → R+,
which is an indicator of how incompatible a vector x ∈ Θ is with the constraints.
For any given ε > 0, a point x ∈ Θ for which ProxC(x) ≤ ε is called an ε-compatible
solution for C. We assume that we have a feasibility-seeking algorithmic operator
AC : RJ → Θ, that defines a Basic Algorithm whose iterative step, given the
current iterate vector xk, calculates the next iterate xk+1 by

(3.2) xk+1 = AC

(
xk
)
.

Given C ⊆ RJ , a proximity function ProxC , a sequence
{
xk
}∞

k=0
⊂ Θ and an ε > 0,

then an element xK of the sequence which has the properties: (i) ProxC

(
xK
)
≤ ε,

and (ii) ProxC

(
xk
)
> ε for all 0 ≤ k < K, is called an ε-output of the sequence{

xk
}∞

k=0
with respect to the pair (C, ProxC). We denote it by O

(
C, ε,

{
xk
}∞

k=0

)
=

xK , O standing for output.
Clearly, an ε-output O

(
C, ε,

{
xk
}∞

k=0

)
of a sequence

{
xk
}∞

k=0
might or might

not exist, but if it does, then it is unique. If
{
xk
}∞

k=0
is produced by an algorithm

intended for the feasible set C, such as the Basic Algorithm (3.2 ), without a termi-
nation criterion, then O

(
C, ε,

{
xk
}∞

k=0

)
is the output produced by that algorithm

when it includes the termination rule to stop when an ε-compatible solution for C
is reached.

In order to “superiorize” such an algorithm we need it to be strong perturbation
resilience in the sense that for every ε > 0, for which an ε-output is defined for a
sequence generated by the Basic Algorithm, for every x0 ∈ Θ, we have also that
the ε′-output is defined for every ε′ > ε and for every sequence

{
yk
}∞

k=0
generated

by yk+1 = AC

(
yk + βkv

k
)
, for all k ≥ 0, where the vector sequence

{
vk
}∞

k=0

is bounded and the scalars {βk}∞k=0 are such that βk ≥ 0, for all k ≥ 0, and∑∞
k=0 βk <∞. See our recent [H] for details.

Along with the constraints set C ⊆ RJ , we look at the objective function
φ : RJ → R, with the convention that a point in RJ for which the value of φ is
smaller is considered superior to a point in RJ for which the value of φ is larger.

The essential idea of the SM is to make use of the perturbations in order
to transform a strongly perturbation resilient algorithm that seeks a constraints-
compatible solution for C (i.e., is seeking feasibility) into one whose outputs are
equally good from the point of view of constraints-compatibility, but are superior
(not necessarily optimal) according to the objective function φ.

This is done by producing from the Basic Algorithm another algorithm, called
its superiorized version, that makes sure not only that the βkv

k are bounded per-
turbations, but also that φ

(
yk + βkv

k
)
≤ φ

(
yk
)
, for k ≥ L for some integer L ≥ 0.

The Superiorized Version of the Basic Algorithm assumes that we have available a
summable sequence {η`}∞`=0 of positive real numbers (for example, η` = a`, where
0 < a < 1) and it generates, simultaneously with the sequence

{
yk
}∞

k=0
in Θ, se-

quences
{
vk
}∞

k=0
and {βk}∞k=0. The latter is generated as a subsequence of {η`}∞`=0,
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resulting in a nonnegative summable sequence {βk}∞k=0. The algorithm further de-
pends on a specified initial point y0 ∈ Θ and on a positive integer N . It makes use
of a logical variable called loop. The superiorized algorithm is presented next by
its pseudo-code.

The Superiorized Version of the Basic Algorithm
set k = 0
set yk = y0

set ` = −1
repeat

set n = 0
set yk,n = yk

while n<N
set vk,n to be a nonascending vector for φ at yk,n

set loop=true
while loop

set ` = `+ 1
set βk,n = η`

set z = yk,n + βk,nv
k,n

if φ (z)≤φ
(
yk
)

then
set n=n+ 1
set yk,n=z
set loop = false

set yk+1=AC

(
yk,N

)
set k = k + 1

Analysis of the Superiorized Version of the Basic Algorithm [H, I], shows
that it produces outputs that are essentially as constraints-compatible as those
produced by the original (not superiorized) Basic Algorithm. However, due to the
repeated steering of the process toward reducing the value of the objective function
φ, we can expect that the output of the Superiorized Version will be superior (from
the point of view of φ) to the output of the original algorithm. A recent work that
includes results about the SM appears in this volume [D].

4. Demonstrative examples

The anonymized pelvic planning CT (computed tomography) of a prostate
cancer patient was employed for the IMRT treatment planning using the proposed
method. Seven equispaced fields were used for targeting the PTV. The dose con-
straints were set using the RTOG 0815 randomized trial protocol [J].

Our preliminary testing of the approach was done by comparing the outputs of
a TV-superiorization algorithm with an, otherwise identical, algorithm that aimed
at only satisfying the dose constraints, without applying the SM. Here AC was
chosen to be ART for inequalities [K]. It was proven to be perturbation resilient
in [L].

From a radiation delivery stand point, a solution that is easy to deliver is one
that has a piecewise constant intensety-beamlet map. The reason has to do with
the physical constraints coming from the MLCs, they require that the beamlets
have a small number of signal levels. It was, therefore, suggested in the literature
to use total-variation (TV) to force the solution to be piecewise constant [M, N].
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We performed two experiments with different starting conditions. For the first
experiment, we initiated the algorithm with the zero vector of dose weights and
for the second experiment all dose weights were given the value 10. Tables 1 and
2 summarize the results for the two experiments and in Figure 1 we present the
associated DVH (dose-volume histogram) curves.

For the first experiment, the TV-superiorization algorithm produced a solution
that met the acceptance criteria after 12 iterations whereas the feasibility-seeking
algorithm was not able to reach an acceptable solution after this number of iter-
ations. For the second experiment, the TV-superiorization algorithm reached an
acceptable solution even faster, i.e., after 7 iterations, and the feasibility-seeking al-
gorithm again failed some of the acceptance criteria after this number of iterations.

Table 1. RTOG 0815 acceptance criteria and results of experi-
ment 1 described in Section 4 (TVS stands for TV-superiorization)

Acceptance criteria Exp 1 with TVS Exp 1 without TVS

PTV: Min Allowed Dose: 75.24 Gy 75.24 Gy 56.13 Gy

PTV: Max Allowed Dose: 84.74 Gy 84.69 Gy 89.42 Gy

Rectum: No more than 50% of the 34.50 % 8.50 %

volume should exceed 60.00 Gy

Rectum: Max Dose 82.64 Gy 82.71 Gy

Table 2. RTOG 0815 acceptance criteria and results of experi-
ment 2 described in Section 4 (TVS stands for TV-superiorization)

Acceptance criteria Exp 2 with TVS Exp 2 without TVS

PTV: Min Allowed Dose: 75.24 Gy 77.80 Gy 76.15 Gy

PTV: Max Allowed Dose: 84.74 Gy 84.71 Gy 87.63 Gy

Rectum: No more than 50% of the 36.90 % 40.50 %

volume should exceed 60.00 Gy

Rectum: Max Dose 84.09 Gy 87.25 Gy

5. Conclusions

Our proposed method successfully produced conformal solutions that met the
acceptance criteria while that an otherwise identical algorithm without superior-
ization failed to do so with the same number of iterations. Future work will assess
the computational gain of the superiorization method compared to a conventional
one and investigate the utility of it for a computationally more complex problems
that can be found in modulated techniques for arc therapy.
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Figure 1. Dose volume histograms (DVH) of the two experi-
ments. Solid lines represent the algorithm with TV-superiorization
(broken lines represent no superiorization). The first (top) took 12
iterations and the second (bottom) took 7 iterations. Exact num-
bers are given in Tables 1 and 2.
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The problem of reconstruction of slices and volumes from 1D and 2D projections has

arisen  in a large number of scientific fields (including computerized tomography, electron

microscopy,  X-ray microscopy, radiology, radio astronomy and holography). Many  different

methods (algorithms) have been suggested for its solution.

In  this paper we present a software package, SNARK09, for reconstruction of 2D images

from  their 1D projections. In the area of image reconstruction, researchers often desire to

compare two or more reconstruction techniques and assess their relative merits. SNARK09

provides  a uniform framework to implement algorithms and evaluate their performance. It

has been designed to treat both parallel and divergent projection geometries and can either

create  test data (with or without noise) for use by reconstruction algorithms or use data
Evaluation

Simulation

Computerized tomography

collected  by another software or a physical device. A number of frequently-used classical

reconstruction  algorithms are incorporated. The package provides a means for easy incor-

poration  of new algorithms for their testing, comparison and evaluation. It comes with tools

for statistical analysis of the results and ten worked examples.

scanner or data generated by other software). The package
1.  Introduction

The need for reconstruction from projections occurs in many
biomedical  areas. Practical applications, such as computer-
ized  tomography (CT), positron emission tomography (PET)
and  X-ray microscopy, use physically collected projection data
to reconstruct real objects. Simulation packages (SNARK09
[1,2]  is an example) allow for thorough testing of effects of
various  factors on the projection data and on the outputs of
reconstruction algorithms. For example, in SNARK09, various
sources  of noise that occurs during X-ray data collection can be

simulated separately so that their effects can be studied and
understood.  (The name SNARK09 originates from the Lewis
Carroll  nonsense poem “The Hunting of the Snark.”)
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SNARK09 provides a total framework for reconstruction
from projections for both simulated and real data, as well
as  statistical evaluation of the results. Mathematical phan-
toms  can be generated either as piecewise constant objects,
appropriate for materials science, or as objects containing
inhomogeneities to better simulate biological materials. Pro-
jection  datasets can be obtained based on mathematically
described phantoms. The user has options of investigating
various scanner modes, including noise models comparable
to  actual imaging devices. There is also an option of using
projection data obtained from external sources (a medical
@stanford.edu (R. Davidi), gabortherman@yahoo.com

comes  with several built-in reconstruction algorithms. It pro-
vides  either pixels or blobs as basis functions. Users have a
means  of implementing their own reconstruction algorithms.

erved.

dx.doi.org/10.1016/j.cmpb.2013.01.003
www.intl.elsevierhealth.com/journals/cmpb
mailto:jklukowska.gc@gmail.com
mailto:rdavidi@stanford.edu
mailto:gabortherman@yahoo.com
dx.doi.org/10.1016/j.cmpb.2013.01.003


i n b i

T
s

1

B
S
a

p
a
e
i

o
f
a

p
d
o
w

t
m
p
s

t
r
r

s
m
s
c
c
g
o

R
a
f
t
t
a

d
a
w
s
a
b
t
n
o
t

o
c

c o m p u t e r m e t h o d s a n d p r o g r a m s 

he results of the reconstructions can be evaluated using a
tatistically sound methodology built into the package.

.1.  Features  of  the  package

elow we  give a short summary of some features included in
NARK09. This is not intended to be a complete list, but rather

 representative sample of what SNARK09 has to offer.
Polychromatic and monochromatic X-ray simulation. The

ackage provides a means of simulating X-rays with either
 monochromatic or polychromatic spectrum at energy lev-
ls  specified by the user. X-rays generated by most medical
maging devices are polychromatic in nature.

Beam hardening correction. Due to the polychromatic nature
f  X-rays, beam hardening correction is needed to compensate
or  different levels of X-ray attenuation. Such a correction is
vailable in SNARK09.

Projection  computation. The projection data through the
hantom can be computed either based on a mathematically
efined phantom (line integrals through geometrical features),
r  a digitized phantom (using lengths of intersections of a ray
ith  each pixel of the phantom).

Digital  difference analyzer (DDA). Projections through digi-
ized  phantoms can be computed very fast using a DDA. This

ethod,  originally developed for drawing lines using a digital
lotter  [3], is used for computation of pixel intersections by a
ingle line.

Basis  functions. Both pixels and blobs [4,5] can be used as
he  basis functions for mathematical representation of the
econstructions. Blobs have been shown to be superior for rep-
esentation of biological structures due to their smoothness.

Reconstruction algorithms. The package provides a large
election of reconstruction algorithms based on transform
ethods and series expansion methods with parameters

elected by the user. User-defined reconstruction algorithms
an  also be easily implemented and used in SNARK09. The
ode  for these algorithms has to be written in C++. The pro-
rammers  have at their disposal a selection of functions and
bjects  already implemented in SNARK09.

Routines and classes for use in user-defined algorithms.
esearchers who  need to implement their own reconstruction
lgorithms have a large range of routines and classes available
or  their use. One example is a function that, for a given projec-
ion  angle and ray number, computes the pixels intersected by
hat ray. This greatly simplifies implementation of additional
lgorithms.

Statistical  comparison of algorithms. The built-in and user-
efined  algorithms can be evaluated for their superiority for

 given task. SNARK09 uses an ensemble of phantoms from
hich  a particular phantom is (randomly) chosen and is recon-

tructed  from its (randomly generated) projection data by the
lgorithms  to be compared. Statistical evaluation is performed
ased  on this multiplicity of reconstructions, which allow us
o assign a statistical significance by which we can reject the
ull  hypothesis that two algorithms are equally good in favor
f  the alternative hypothesis that one of them is better than

he  other.

Figure of merit (FOM). A meaningful statistical evaluation
f  reconstruction methods has to be done in terms of a spe-
ific  task at hand. The package provides several built-in FOMs,
 o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 424–440 425

as well as a means for the user to provide their own defini-
tions.  One of the built-in FOMs is imagewise region of interest,
which  has been shown to correlate well with the performance
of  humans for detection of small tumors in lung tissue [6].

Use  of simulated or real data. The package can either sim-
ulate  the data generation based on a mathematically defined
phantom,  or use data obtained by another simulation package
or  an actual device.

Graphical  user interface. SNARK09 runs from the com-
mand line. There are two other programs, SNARK09Input and
SNARK09Display, that provide assistance in creation of input
files  and visualization of sinograms and of reconstructions.
SNARK09Display has also the capability of displaying profile
lines  of the reconstructed images as well as plotting several
built-in  evaluation parameters.

1.2.  Related  work

There are many  packages available for reconstruction from
projections. Some of them, like SNARK09, are designed to work
with 2D images and their 1D projections; some are designed
to  work with 3D objects and their 2D projections; some can
do  both. The packages provide a varied selection of simu-
lation  capabilities, choices of reconstruction algorithms and
evaluation  techniques. Some are developed for the purpose of
reconstruction  from real data and for obtaining results used in
practical studies in medicine or biology. Others, like SNARK09,
provide  means of evaluation and examination of different
effects  that occur during the imaging process and are testbeds
for  new and existing reconstruction methodologies. Below, we
mention a few of these packages that we  are most familiar
with  as examples; it is by no means a complete review of what
is  available.

jSNARK [7] incorporates a large subset of the capabilities of
SNARK09  for reconstructing 2D objects from their 1D projec-
tions,  but it also extends those capabilities to reconstructing
3D  objects from their 2D projections. It is written in Java
allowing for greater platform flexibility and for user-defined
routines written as plugins.

There  are many  software packages designed primarily for
reconstruction from transmission electron microscopy data.
Their  goal is to produce reconstructions that can be used
by  biologists, rather than to allow experimentation with new
algorithms.  Three examples of such packages are Xmipp [8],
SPIDER  [9] and IMOD [10].

MATLAB® provides some very basic tomography routines
and  phantoms. Many researchers write their own routines
using  MATLAB® environment. Two examples of such code
available  for free download are the Image  Reconstruction Tool-
box  [11] and AIR Tools [12] that implement iterative algebraic
reconstruction methods.

STIR  [13] is open-source software for use in tomographic
imaging. Its aim is to provide a multi-platform object-oriented
framework for all data manipulations in tomographic imaging.
Currently,  the emphasis is on iterative image  reconstruction

in  positron emission tomography.

SNARK09  offers much  more  than just the reconstruction
routines. It provides a basic platform that can be used by
researchers (with no or not much  extra coding) to study,
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simulate and perform data collection, reconstruction and
statistical  analysis.

1.3.  Outline  of  the  rest  of  this  paper

In this paper we  review the functionality of the SNARK09 soft-
ware  package. We discuss phantom creation, data collection
and  reconstruction methods in Section 2. The system descrip-
tion  follows in Section 3. We  go over an example of the use of
the  package in Section 4. Finally, mode of availability and sys-
tem  requirements are covered in Section 5 and future work in
Section  6.

2.  Computational  methods  and  theory

The reconstruction problem may  be stated roughly as follows:
given  approximations (based on physical measurements) of
the  real ray sums of a picture for a number of rays, estimate
the  N × N digitization of the picture. The SNARK09 package
provides a means of simulating each step of this process. The
details  of this are discussed in this section.

SNARK09 deals with pictures defined over the 2D plane of
points  (x, y) in some assumed fixed coordinate system. To be
exact,  a picture has two components:

(1) the picture region, which is a square whose center is at
the  origin of the coordinate system and whose sides are
parallel  to its axes;

(2)  a function of two variables whose value is zero outside the
picture  region.

Identical functions may  give rise to different pictures if the
picture  regions are different.

We often refer to the value f(x, y) of the picture f at the
point (x, y) as the density of f at (x, y). Within SNARK09, f(x, y)
is  approximated by a grid G (which is a finite set {(g1, h1), . . .,
(gJ, hJ)} of points in the plane), a basic basis function b (which is
just  a function of two variables), and coefficients cj associated
with  each grid point (gj, hj) as follows. For 1 ≤ j ≤ J, each of the
functions

bj(x, y) = b(x − gj, y − hj) (1)

is called a basis function and f is defined by

J

k(x, y) =

⎧⎨
⎩

√
3 × DELTA

4� × SUPP

0, 
f (x, y) =
∑
j=1

cjbj(x, y); (2)

{(
m

2
×  DELTA,

√
3n

2
×  DELT
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i.e., as an expansion over the basis functions bj with
coefficients cj. SNARK09 allows the use of two different kinds
of  basis functions: pixels and blobs [4,5], each with its own
type  of grid.

The  exact definition of a pixel basis function depends on
a  variable called PIXSIZ that is specified by the input to
SNARK09. The pixel basis function is then defined to have the
value  1 at points strictly inside the square that is centered
at  the origin and that has edges of length PIXSIZ parallel to
the  coordinate axes, and to have the value 0 at points strictly
outside  this square. The associated grid G is defined, by  an
additional  input-specified variable called NELEM, to be the set

{
(m × PIXSIZ, n × PIXSIZ) | m and n integers, max {|m|, |n|}

≤ NELEM/2
}

, (3)

where | · | denotes the absolute value. This approach subdi-
vides  the picture region into NELEM2 equal squares. Each of
these  smaller squares is called a pixel (short for picture ele-
ment).  In the interior of a pixel, the density of the function, as
defined  by (2), is uniform. An arbitrary picture can be approx-
imated  by such an expansion by simply assigning to each cj

the average density of the picture in the corresponding pixel;
such  an approximation is referred to as the NELEM2 digitization
of  the picture. In SNARK09, the picture region (which is some-
times  referred to as the reconstruction region) is determined by
the program (based on the input-specified variables PIXSIZ
and  NELEM) as the square whose corners have coordinates
(c,  c), (− c, c), (− c, − c), (c, − c), where

c = PIXSIZ × NELEM
2

. (4)

A blob basis function also depends on some input-specified
variables; however, SNARK09 will automatically calculate rea-
sonable values for these parameters, relieving the user from
the  need of having to study the mathematical definitions that
now  follow. Blob basis functions are generalizations of the well-
known  window functions in digital signal processing called
Kaiser–Bessel [4,5]; they are circularly symmetric, have nonzero
values  only in a circular disk around the origin, and smoothly
decrease from a positive value at the origin to zero at the edge
of  the disk. The exact definition depends on the three variables
SUPPORT,  DELTA and SHAPE as follows:

HAPE × (1 − r2)
2 × I3(SHAPE)

×  I2(SHAPE ×
√

1 − r2), if 0 ≤ r ≤ 1,

otherwise,

(5)

where  Ii denotes the modified Bessel function of the first
kind  of order i and r =

√
x2 + y2/SUPPORT. The grid G that

determines the blob basis functions using (5) is hexag-
onal  [14]; it is defined as the set of all points in the
set
A

)∣∣∣∣m and n are integers, and m + n is even

}
(6)
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hat are also inside the reconstruction region specified
y  (4).

.1.  Creation  of  a  phantom

n practical applications one wishes to reconstruct a real
bject  from its projections. During the development of recon-
truction  methods, though, it is preferable to work with
athematically described objects, called phantoms. The rea-

on  for this is that with real objects evaluation of the accuracy
f  a reconstruction method is practically impossible. The pur-
ose  of imaging and reconstruction is to visualize an object
hat  cannot be seen otherwise (due to its size or because the
nternal  structure is desired, for example, the internal struc-
ures  of a cell or a cross section of a human head). Use of

athematically defined phantoms allows for evaluation of
uality  of reconstruction because these objects are known.
omputer simulations with phantoms also allow for inves-

igation  of various phenomena occurring during both imaging
nd  reconstruction separately from any other phenomena.

A  phantom is a picture on which we wish to test recon-
truction algorithms or data collection methods. In SNARK09
he  phantom is put together by superimposing a number of
lemental  objects. There are five different types of elemental
bjects available: rectangles, ellipses, isosceles triangles, seg-
ents of circles and sectors of circles. The elemental objects

re  illustrated in Fig. 1. Each elemental object is described by
ts  position in the plane (denoted by CX, CY), size along the
wo  perpendicular directions (denoted by U, V), orientation
denoted by ANG) and density (which, for example, in case

f  computerized tomography represents the linear attenua-
ion  coefficient). They are allowed to overlap, in which case
he  densities of overlap areas are added together. Examples

U

V

(CX,CY)ANG

U
V

(CX,CY)ANG

U

V

(CX,CY)ANG

UV

(CX,CY)
ANG

UV

(CX,CY)

ANG

elip

segmtria

sect

rect

ig. 1 – Elemental objects used to construct phantoms in
NARK09:  rectangle (rect), ellipse (elip), triangle (tria),
egment of a circle (segm) and sector of a circle (sect).

Fig. 2 – (a) CT image of a cross section of the human thorax
(reproduced with permission from [15]). (b) 255 × 255
digitization of a thorax phantom created based on real

cross  sections such as the one shown in (a).

of phantoms that can be created from these simple elemen-
tal  objects are shown in Fig. 2(b) (this is a phantom based on
images,  such as the one shown in Fig. 2(a) from [15], of an
actual  cross section of the human thorax; its exact specifica-
tion  is given in Table 1), Fig. 3(a) (which is based on a phantom
in  [16] designed for testing algorithms with data available only
from  a limited angular range) and Fig. 3(b) (which is a head
phantom from [17]). The widely used Shepp–Logan phantom
[18]  can also be described using the elemental objects provided
by  SNARK09.

The N × N digitization of the phantom is an N × N array of

pixels,  where N is a user-specified integer. Each pixel’s den-
sity  is determined as the average of the densities at K × K
uniformly-spaced points within a pixel. K is a user-specified

dx.doi.org/10.1016/j.cmpb.2013.01.003
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Table 1 – Basic thorax phantom description used in SNARK09, see Fig. 2(b). The linear attenuation coefficients (LAC) in
this table are specified for a single energy level of 60 keV. To obtain the actual LAC at a point, the LACs provided in the
table  should be added together for all objects that contain that point. For example, the lungs, which are inside the
smaller ellipse specified for the thorax (second row), have LAC value 0.196 − 0.147 = 0.049; this is in units of cm−1.

Organ Elemental object CX CY U V ANG LACa

Thorax elip 0.000 0.000 200.000 180.000 0.00 0.196
elip 0.000 −5.000 180.000 162.000 0.00 −0.147

Heart elip 19.022 −82.533 76.000 83.000 30.00 0.147
elip −10.778 −99.267 33.000 65.000 30.00 0.018
elip 47.867 −64.956 33.000 65.000 30.00 0.018
elip  −20.578 −26.356 17.000 10.000 30.00 0.018
elip  58.711 −134.090 9.000 12.000 30.00 0.018

Sternum elip 41.244 −147.533 8.000 8.000 30.00 0.018
elip 32.000 −171.000 7.000 5.000 0.00 0.175
rect 0.000 −173.000 25.000 4.000 0.00 0.175

Spinal column elip 0.000 95.000 29.750 29.750 0.00 0.322
elip 0.000 95.000 25.500 25.500 0.00 −0.053
sect 0.000 124.750 57.000 29.750 180.00 0.322
segm 0.000 124.750 57.000 29.750 180.00 −0.322
sect 0.000 108.760 26.374 13.765 180.00 −0.322
rect 0.000 134.750 30.000 10.000 0.00 0.322
elip 0.000 134.750 20.000 8.000 0.00 −0.157
rect 0.000 150.750 8.000 6.000 0.00 0.322

Ribs elip −169.000 −77.000 5.000 25.000 30.00 0.175
elip 169.000 −77.000 5.000 25.000 −30.00 0.175
elip −189.000 0.000 8.000 29.000 0.00 0.175
elip 189.000 0.000 8.000 29.000 0.00 0.175
elip −162.000 85.000 8.000 18.000 −30.00 0.175
elip 162.000 85.000 8.000 18.000 30.00 0.175
elip −126.000 126.000 8.000 26.000 −50.00 0.175
elip 126.000 126.000 8.000 26.000 50.00 0.175
elip −78.000 154.000 8.000 14.000 −70.00 0.175
elip 78.000 154.000 8.000 14.000 70.00 0.175

Other elip 14.000 23.000 19.000 29.500 −45.00 0.147
53
rect 7.000 

a Linear attenuation coefficient.

integer. As the value of K increases, the digitized phantom
resembles the mathematical phantom more  closely. The den-
sity assigned to a pixel can be expressed as a sum

1
K2

K2∑
k=1

J∑
j=1

ık,jdj, (7)

where J is the number of elemental objects in the phantom, dj

is the density of the jth elemental object, and ık,j = 1 if the kth
of  the K2 points in the pixel is in the jth elemental object and
it  is zero otherwise. Two possible digitizations, with K = 1 and
K  = 13, of a disk phantom are shown in Fig. 4.

In order to obtain phantoms that resemble actual biological
objects  more  closely, SNARK09 has an option of adding local
inhomogeneities to phantoms. Using locally piecewise phan-
toms  may  lead to misleading conclusions about the efficacy
of  an algorithm in practice, because biological structures are
far  from being piecewise constant [19]. Examples of a piece-

wise  constant phantom and one with local inhomogeneities
are presented in Fig. 3.

Phantoms in SNARK09 can carry information about atten-
uation  at different energy levels of polychromatic X-ray
.000 30.000 9.000 30.00 0.147

radiation. The way  such information is made use of is dis-
cussed  in Section 2.2.3.

SNARK09 is not designed to work with “real” images, like
the  one in Fig. 2(a). One could create a phantom that consists
of  as many  small squares as there are pixels in such image
with  the densities corresponding to the grayscale values in the
image.  This is not efficient and not advisable, and produces
data  biased toward reconstructions based on the pixelized
images.

2.2.  Data  collection

SNARK09 is capable of simulating several modes of data col-
lection  used in various applications such as computerized
tomography (CT) and positron emission tomography (PET).
We  first describe some general ideas and then specify how
SNARK09  simulates the CT and PET modes of data collection.
These  simulations are based closely on the actual behavior of
the  instruments (see, for example, [17, Chapter 4] for CT and

[20]  for PET) and thus provide us with a tool capable of pre-
dicting  the performance of such instruments in practice. As
explained  below (in particular in Section 3.1.1), once a pro-
jection  data set is generated, it is stored internally (together

dx.doi.org/10.1016/j.cmpb.2013.01.003
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Fig. 3 – Examples of phantoms: (a) 241 × 241 digitization of
a phantom based on [16]. It was  designed for testing
algorithms with data available only from a limited angular
range.  (b) 245 × 245 digitization of a head phantom from
[17], with local inhomogeneities present.

Fig. 4 – Two 25 × 25 digitizations of a mathematically de
 o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 424–440 429

with all the information that was  utilized for its generation) to
be used repeatedly by other processes such as reconstruction
algorithms.

2.2.1.  Computation  of  ray  sums
Projection data collection is simulated by computation of
approximate  line integrals through the image  according to the
options  indicated in the input file. The actual line integrals
are  approximated by summations of products of densities and
lengths  of intersection of all the elemental objects intersected
by  the given ray. There are two kinds of rays available:

(1)  a line ray, which is a straight line, and
(2) a strip ray, which is a region of the plane between a pair of

parallel  straight lines.

Given  a picture and a ray, the real ray sum is the integral of the
picture  along the ray (either a line or a strip). This is computed
using  the geometric description of the elemental objects, not
the  digitized version of the phantom.

SNARK09 also deals with pseudo ray sums; these are defined
only  for expansions of the form of Eq. (2). In the line ray case,
the  pseudo ray sum is the real ray sum of the picture defined by
the function f of Eq. (2) (it uses the intersections of the ray with
the  basis function, either pixel or blob) and a picture region
large  enough to contain all points at which the value of f is
not  zero. (Since the grid G is finite, see paragraph above Eq. (1),
it  is always possible to find such a picture region.) In the case
of  strip rays, the pseudo ray sum is defined as

⎛
⎝∑

j∈S

cj

⎞
⎠ ×

∫ ∞

−∞

∫ ∞

−∞
b(x, y)dxdy, (8)

where S contains exactly those j (1 ≤ j ≤ J) for which (gj, hj) is in
the  strip. Note that the integral in the above equation depends
only  on the basic basis function; it is equal to the area of the
pixel  in the pixel case and area under the curve of the blob in
the  blob case.

Pseudo  ray sums are used in iterative reconstruction
algorithms in which the objective of the algorithm is the
estimation of the coefficients cj in Eq. (2). When SNARK09 is

used  for simulating how a physical device produces projection
data,  real ray sums should be used to obtain high accuracy.
Depending on the parameters of the basis functions, pseudo
ray  sums may  be very inaccurate.

scribed disk phantom, using (a) K = 1 and (b) K = 13.

dx.doi.org/10.1016/j.cmpb.2013.01.003
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2.2.2.  Geometry  of  data  collection
SNARK09 is not capable of handling an arbitrary arrangement
of  rays, but it can handle a number of arrangements of rays
that  are typical of what one might come across in practice.

The  set of all rays along which data are collected is divided
into  a number of subsets, called projections. The number of
projections  and number of rays per projection are user-defined
values,  although SNARK09 can compute the number of rays
sufficient  to cover the entire area of the phantom. There are
two  basically different modes of data collection: divergent and
parallel.

In  divergent geometry (Fig. 5(a)), a projection consists of a set
of  line rays that go through a common point (the source posi-
tion).  In all the projections, the source is at a fixed distance
from  the origin. The angle between the line from origin to
source  and the x-axis (marked THETA in Fig. 5(a)) is called
the  projection angle. The rays in one projection connect the
source  to points (detectors) that lie either on an arc of a cir-
cle  whose center is at the source or on a straight line tangent
to  that circle. In either case, one of the detectors (marked C in
Fig.  5(a)) lies on the line connecting the source to the origin,
at  a distance STOD (for Source TO Detector) from the source.
The  other detectors are spaced symmetrically at equal inter-
vals  on the two sides of C, either on the arc whose center is
the  source or on the tangent line to this arc at C. The spacing
between detectors (the length of the arc or that of the tangent
line  between two neighboring detectors) is denoted by PINC
(specified  by the user in the input file to SNARK09).

In parallel geometry (Fig. 5(b)), a projection consists of a set of
parallel  line or strip rays. The angle these rays make with the
x-axis  (denoted by THETA in Fig. 5(b)) is called the projection
angle.  In the line case one of the rays goes through the ori-
gin,  in the strip case the origin is equidistant to the two lines
bounding  one of the strips. The other rays are spaced sym-
metrically  at equal intervals on the two sides of this ray. In
the  strip case the rays are abutting. Let d denote the distance
between  the rays in the line case or the width of the rays in the
strip  case; it is determined as follows. The input specifies the
variable  PINC and also whether the ray spacing is to be uniform
or  variable. In the uniform case, d = PINC, for all projections. In
the variable case it depends on the projection angle THETA:
d  = PINC × max  {| sin THETA|, |cos THETA|}. (A consequence of
this  definition is that the distance between two consecutive
intercepts with either the x- or the y-axis is PINC.)

2.2.3.  Simulating  CT
Computerized tomography (CT) is a method of imaging the
interior  of an object (frequently a human body) based on the
measurements of X-ray radiation that passes through that
object.  The density values assigned to elemental objects in the
phantom  are interpreted as attenuation coefficients of the ele-
mental  object. The imaging of three-dimensional (3D) objects
can  be done in thin sections that are in practice considered to
be two-dimensional (2D) images. Each measurement is related
to  the X-ray source and detector positions lying in the plane
of  such section. For each pair of source and detector positions

two  measurements are taken: a calibration measurement and
an  actual measurement. A calibration measurement is taken
without  the object, only through the background material. An
actual measurement is taken through the object. Ideally, the
divergent  and (b) parallel.

X-ray spectrum would have a fixed energy level (monochro-
matic X-rays), which means that each point has a uniquely
assigned attenuation coefficient. In practice, X-rays are made
up  of a continuous energy spectrum and this can be simulated

in  SNARK09. When this is done, attenuation of the X-ray beam
at  a point depends on the material traversed through by the
beam  prior to reaching that point, because more  lower energy

dx.doi.org/10.1016/j.cmpb.2013.01.003
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Fig. 6 – Schematic of geometry of data collection in PET: (a)
Simplified  geometry of eight-detector PET system, and (b)
SNARK09  divergent geometry used to simulate the PET
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hotons get absorbed by that material than higher energy pho-
ons  (this is referred to as beam hardening).

SNARK09 is capable of simulating both monochromatic and
olychromatic X-rays. The polychromaticity of the X-ray is
epresented by up to seven discrete energy levels. The ray
um  for a fixed pair of source-detector positions is defined
y  p = − ln(A/C), where A and C are actual and calibration
easurements, respectively. The set of p values for all source-

etector  pairs is called the projection data. For polychromatic
imulation the phantom description contains a list of linear
ttenuation coefficients corresponding to each discrete energy
evel.  For the display purposes, the image  of the phantom is
enerated  based on linear attenuation coefficients of only one
nergy level.

When  CT data collection is simulated in SNARK09, the
alues  of ray sums are used in computations of A. Accord-
ng  to options, specified in the input file, the simulated data
eflects  effects of beam hardening, detector width and scatter,
uantum  noise and various scanning modes (for a detailed
iscussion of these effects see, for example, [17]).

.2.4.  Simulating  PET
n positron emission tomography (PET) we are interested in the
ptake  of positron-emitting isotopes by various parts of the
uman  body. When a positron is emitted it is annihilated with

 nearby electron and produces two �-ray photons of identi-
al  energy traveling in approximately opposite directions [20,
ig. 1]. The two photons are detected in near coincidence by

 pair of opposite detectors. The annihilation, and thus the
ositron  emission, is known to take place somewhere along
he  line joining the detector pair [20, Fig. 2]. We  count such
oincidences for a number of detector pairs around the body.
rom  these measured counts our aim is to estimate the con-
entration  of the positron emitter at various points in the body
ross-section.

Fig.  6(a) shows a simplification of PET geometry [20, Fig. 2]
onsisting  of a ring of eight detectors. For simplicity of the
llustration, we assume that each detector is coupled with
hree  opposite detectors to detect (near) coincidence arrivals
f  photons. Thus the lines sampled by each detector form a
ivergent  pattern. By analogy with X-ray CT, we refer to the
ollections  of such (divergent) lines as a projection and the lines
hemselves  as rays in the projection. Thus in Fig. 6(a) we have
ight  projections with three rays per projection and twelve
ays  in total in all the projections.

To  simulate measurements by a PET system, SNARK09
tilizes many  of the routines written to simulate X-ray CT
easurements. Consider Fig. 6(b) to see how the X-ray CT

rganization is used to simulate data collection for the
implified PET geometry. It shows a schematic of a divergent
eometry with the detectors located on an arc. The ray sums
re  measured along lines joining the “source” and three
pposite detectors located on an arc of a circle whose center

s  at the source. Fig. 6(b) illustrates the situation when the
source”  is at location D2 and the detectors are on the arc
′
5D′

6D′
7. By simple geometrical considerations we  see that,
or  this arc, the PINC of Section 2.2.2 can be selected so that
he  line connecting the “source” to a detector D′ in the CT
eometry  goes through the corresponding detector D in the
ET  geometry and so the rays sums are calculated for the rays
geometry  shown in (a).

whose locations are the correct ones for the PET geometry
of  Fig. 6(a). In Fig. 6(b) a full scan is made by measuring the
ray  sums as the source rotates through locations D1–D8. The
PET  data simulation is completed by generating, for each ray

sum,  a Poisson random variable whose mean is given by the
value  of the ray sum. When simulating PET data collection,
SNARK09 ignores attenuation effects.

dx.doi.org/10.1016/j.cmpb.2013.01.003
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2.3.  Built-in  reconstruction  algorithms

The SNARK09 package comes with several built-in reconstruc-
tion  algorithms. It also provides the option for users to define
their  own reconstruction algorithms and termination tests. In
this section we provide a very brief listing of the reconstruc-
tion  algorithms that are available in SNARK09 together with
references  to works that further describe those algorithms (a
more detailed description of all the reconstruction algorithms
is  beyond the scope of this publication). The references are
not  necessarily to the sources that originated the method, but
rather to the ones that provide comprehensive descriptions.

The  reconstruction methods are often categorized into
two  groups: transform methods and series expansion meth-
ods.  SNARK09 provides several algorithms in both categories.
The  transform methods provided are filtered backprojection
(FBP), rho-filtered layergram, Fourier method, and lino-
grams.  The series expansion methods provided are algebraic
reconstruction techniques (ART), both additive and mul-
tiplicative, simultaneous iterative reconstruction technique
(SIRT),  quadratic optimization methods, and a maximum a
posteriori probability (MAP) algorithm for PET based on a mod-
ified  expectation–maximization (EM) algorithm (referred to as
EMAP). The series expansion methods can be used with either
pixels  or blobs; the transform methods are limited to only pixel
reconstructions.

FBP can be used for reconstruction from either parallel (see,
e.g.,  [17,21]) or divergent rays (see, e.g., [22,17]). The standard
backprojection works by estimating the density at a point
by  adding all the ray sums of the lines through that point.
FBP  filters projection data before it is used in the backprojec-
tion. Several different types of filters can be specified for this
method.

Rho-filtered  layergram (see, e.g., [17,21,23]) is a reconstruction
method that attempts to deblur the picture that is obtained
by  backprojection alone. SNARK09 provides various deblurring
methods  that can be used with this algorithm.

The Fourier method (see, e.g., [17,24]) is based on the pro-
jection  theorem. Roughly speaking, the projection data are
first  transformed using the one-dimensional Fourier trans-
form.  This provides values of the two-dimensional Fourier
transform of the picture on radial lines. From these values the
Fourier  transform of the picture is estimated at the centers of
the  pixels of a grid, and the discrete inverse two-dimensional
Fourier transform is used to get the reconstructed picture.

Linogram is another method based on the projection the-
orem,  (see, e.g., [17,25,26]). Provided that the projection data
are  collected in a way  that matches certain assumptions,
the linogram algorithm produces reconstructions faster than
FBP  and the quality of the reconstructions tends to be
better.

ART  (see, e.g., [27,17]) is a family of iterative algorithms that,
starting  from an initial estimate of the picture to be recon-
structed, update the estimate through a sequence of steps. A
single step is influenced by exactly one ray for which we have
an  estimate of the ray sum. Only those basis function (pixel or
blob) densities that contribute to the associated pseudo ray

sum  are updated. The updating is done by the addition of
a  correction term (additive ART) or multiplication by a cor-
rection  term (multiplicative ART) to the density in each such
 b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 424–440

basis function, so that after the correction the pseudo ray sum
for  the ray in question will be nearer to the ray sum in the
projection data.

SIRT  (see, e.g., [28,29]) is an iterative procedure that, start-
ing  from an initial estimate of the picture to be reconstructed,
updates the estimate through a sequence of steps. Roughly
speaking, the correction at each update is the discrete back-
projection  of a set of “projection error data” that consists of all
the  differences between the given ray sums and corresponding
pseudo ray sums from the current estimate of the image.

Quadratic optimization techniques are a family of algorithms
(see,  e.g., [17,30,31]) that minimize a quadratic function of the
vector  of basis function densities using an iterative process.
There  are several choices available for the quadratic function
to  be minimized and the minimization method to be used.

EMAP  is a maximum a posteriori probability (MAP) algorithm
for  PET based on a modified expectation–maximization (EM)
algorithm  (see [32,33]).

In  addition to the built-in algorithms, the users can add up
to  ten user-defined reconstruction algorithms to SNARK09.

2.4.  Evaluation

For single reconstructions, SNARK09 provides means for the
evaluation  of some quantitative measures of the overall differ-
ence  between a digitized test phantom and its reconstruction.
Such an evaluation can be performed either over the entire
region  of the image  or over selected areas, and can be also
restricted to pixels whose densities fall within a user-selected
range.

2.5.  Experimenter

It is often desirable to evaluate the relative efficacy of two or
more  reconstruction methods for a specific medical task in
a  manner that is statistically sound [34–37]. Such an evalua-
tion  must be done using a sample set that is large enough to
provide  a statistically significant result. Performing this evalu-
ation  on mathematical phantoms requires a means of running
the  competing algorithms on projection data obtained from
a  large number of randomly generated phantoms. Thereafter,
various  numerical measures of agreement between the recon-
structed  images and the original phantoms may  be used to
reach  a conclusion that has some statistical substance. A
straightforward way of achieving this goal is to provide a
front-end  or driver program that contains all the requisite
commands that may  be fed to SNARK09 to generate as many
phantoms  as needed together with their projection data, to
implement  the desired reconstruction algorithms on these
data,  and to evaluate the reconstructed images. Such a driver
program  is provided by SNARK09 in form of the Experimenter
module. The method used in the comparative evaluation of
the  algorithms consists of the following:
ensemble of phantoms and their projection data;
•  reconstruction from the projection data by each of the algo-

rithms  to be compared;

dx.doi.org/10.1016/j.cmpb.2013.01.003
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 assignment to each reconstructed image  a figure of merit
(FOM),  which measures the appropriateness of the image
for  solving the specified task;

 calculation of the statistical significance, based on the FOMs
for  all reconstructions, at which we can reject the null
hypothesis that the methods are equally helpful for solv-
ing  the task in favor of the alternative hypothesis that the
one  with the higher average FOM is more  helpful.

he ensemble of phantoms available for multiple runs of
NARK09  within the Experimenter module has several pos-
ible  sources of randomness:

1)  Users may  specify a list of multiple phantom descriptions
that are chosen at random during the experiment.

2) For a fixed pair of distinct density values, paired structures,
which are elemental objects that appear symmetrically

with respect to the vertical line through the center of a
phantom, can be assigned densities in such a way  that
in  each pair exactly one structure has one of the two fixed
density  values. This assignment is done in a random man-
ner  at the time of phantom generation. Given s paired
structures, there are 2s possible phantoms, assuming that
the  paired structures are the only source of variability in
the  ensemble.

3)  Random inhomogeneity can be added to the pixel densi-
ties  each time a new phantom is generated.

4) Noise in the projection data may  be generated at random
each  time a projection dataset is generated.

NARK09 provides several built-in FOMs. It also allows users to
reate new FOMs that are more  appropriate for a task at hand.
elow  we  provide a brief description of FOMs that are built

nto  SNARK09 together with references to works that further
escribe  them.

The  structural accuracy FOM [35,37] is computed as follows.
onsider a phantom that contains a total of N structures. For

 reconstruction, let ˛r
k

be the average pixel value for those
ixels  whose centers are within the structure k. Let ˛

p
k

be the
verage  pixel value of the corresponding structure in the phan-
om.  The structural accuracy of a reconstruction is defined as

1
N

N∑
k=1

|˛r
k − ˛

p
k
|. (9)

The pointwise accuracy FOM [35,37] is defined as the nega-

IROI =

[∑B

b=[∑B

b=1
ive  of the normalized root mean square distance between a
econstruction and the phantom. It is sometimes desirable to
ompute the pointwise accuracy when both the phantom and
he  reconstruction are clipped to a specified density range.
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The hit-ratio FOM [35,37] is calculated only for those phan-
toms  containing paired structures (such paired structures
have  unequal densities). For such pairs a hit occurs if the struc-
ture  in the pair with the higher average density in the phantom
is  also the structure in the pair with the higher average den-
sity  in the reconstruction. The hit-ratio for a reconstruction is
the number of hits divided by the total number of pairs.

The  imagewise region of interest (IROI) FOM [6] is calculated
only for phantoms that contain paired structures. Such paired
structures  must have unequal densities with one of the struc-
tures  having non-zero density (we refer to it as the tumor) and
the  other having density zero. The pairs of structures are num-
bered  from 1 to B. For 1 ≤ b ≤ B, let ˛

p
t (b) (respectively, ˛

p
n(b))

denote  the average density in the phantom of the structure of
the  bth pair that is (respectively, is not) the tumor. We  specify
similarly  ˛r

t (b) (respectively, ˛r
n(b)), for the reconstruction. The

imagewise  region of interest FOM is defined by

b) − ˛r
n(b))

]
/

[√∑B

b=1

(
˛r

n(b) − (1/B)
∑B

b′=1˛r
n(b′)

)2
]

b) − ˛
p
n(b)

)]
/

[√∑B

b=1

(
˛

p
n(b) − (1/B)

∑B

b′=1˛
p
n(b′)

)2
] . (10)

The  first thing to note about this formula is that the numer-
ator  and the denominator in the big fraction are exactly the
same  except that the numerator refers to the reconstruc-
tion and the denominator refers to the phantom. Thus, if the
reconstruction is perfect (in the sense of being identical to the
phantom)  then IROI = 1. Analyzing the contents of the numer-
ator  and the denominator, we see that they are (except for
constants  that cancel out) the mean difference between the
average  values at the tumor site and the corresponding non-
tumor  site divided by the standard deviation of the average
values  at the non-tumor sites. It has been found by experi-
ments  with human observers that this FOM correlates well
with  the performance of people [6].

3.  System  description

In this section we discuss the structure of the SNARK09
package, its various modules and the graphical user interfaces.

3.1.  Application  framework

A SNARK09 run can be subdivided into three phases: (1) data
generation,  (2) initialization and reconstruction, and (3) anal-
ysis.

Each  of these phases requires some input data and
produces some output data. Some of the output is used as
the  input of a later (or even the same) phase. Provided that
the  appropriate input data are available, a single SNARK09 run
may consist of one, two or all three of these phases.

We  now proceed with a description of each of the three
phases. The reader should consult Fig. 7 for an overview. The

specific  details of mandatory and optional parts of the input
are  discussed in the online manual [2]. The reader should be
aware  that the word “input” is used for both the stream of
commands  that drive a whole SNARK09 run, but also to what

dx.doi.org/10.1016/j.cmpb.2013.01.003


434  c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 424–440

processing and visualization.)

3) reconstruction data

Data
Generation

Analysis

Initialization
and

Reconstruction

1) text files with results of analysis
2) various types of image data

1) phantom description
2) projection description

2) list of reconstruction 
    algorithms

    reconstruction region
1) description of

1) description of analysis
    that should be performed

1) copy of the input data
2) pixel by pixel description of 
    generated phantom
3) ray by ray description of 
    generated projection data

1) copy of the projection data
2) copy of the phantom

SNARK09 output files

(All formated for further

SNARK09 input file

SNARK09 phase

flow 

markup language) format, which is suitable for easy access in
subsequent processing steps and for visualization. During the
Fig. 7 – Data 

is considered to be the input data to any of the phases of such
a  run.

3.1.1.  Data  generation  phase
During this phase SNARK09 generates a phantom and projec-
tion  data of it. The projection data consist of real ray sums
of  the phantom, possibly contaminated by the types of noise
that  one may  come across in a device used for collecting data
for  reconstruction.

Input: The input for this phase consists of (1) the geomet-
rical  description of the phantom, and (2) description of the
projections  including geometry of data collection, number and
distribution  of projections and noise present during the data
collection  process.

Output:  The output of this phase consists of (1) a copy of
the  geometrical description of the phantom, (2) a pixel by
pixel  description of the phantom for one or more energy levels
(according  to specifications provided in the input), (3) a copy
of  the geometry of data collection, number and distribution
of  projections and noise present during the data collection
process, and (4) a ray by ray description of each projection.
The output is self contained in the sense that it contains
all  the information provided by the input together with the
newly  generated data. This is used as input for the subsequent
phases  either in the same run of SNARK09 or in separate runs,
in  which the presence of the original input data is not required.

3.1.2.  Initialization  and  reconstruction  phase
The main goal of this phase is to perform the reconstruc-
tion based on the available projection data. This phase can
be  further divided into two sub-phases: (1) initialization and

(2)  reconstruction. The latter cannot be performed without the
former  having been performed in the same run.

During the initialization sub-phase, the nature of the grid
for  the reconstruction region as well as the assumed geometry
in SNARK09.

of  data collection are determined. The phantom and projec-
tion  data are written as output files in the XML  (extensible
Fig. 8 – SNARK09Input is a graphical user interface used for
creation  of SNARK09 input files.

dx.doi.org/10.1016/j.cmpb.2013.01.003
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econstruction sub-phase the reconstruction algorithms are
arried out and the results are saved.

Input: The first source of input data is the main input file for
he  SNARK09 run. It contains (1) the description of the recon-
truction  region, and (2) the list of algorithms to be used for
he  reconstruction. The second input file is simply the output
le  produced in the previous phase. This file does not have to
e created in the same run of SNARK09. In fact, the second file
an  be manually produced and filled by the data obtained by

 real imaging device.
Output:  There are two XML  output files produced by this

hase.  The first one contains just a copy of the projection data.
t  is written in the format used in the subsequent phases and
or  visualization. The second file contains a copy of the phan-
om  (if it is available) and of all the reconstructions in the
urrent  run of SNARK09. If iterative reconstruction methods
re  used, then the reconstructions produced by each of the
terative  steps are saved.

.1.3.  Analysis  phase
n the final phase, the data obtained by the reconstruction
lgorithms can be further processed and analyzed. Depend-
ng  on the commands in the input file there are several things
hat  may  be achieved here: (1) statistical analysis of the results,

2)  comparison of reconstruction(s) with a phantom, (3) stor-
ng  of a reconstruction in a format that allows for its later use
s  a starting point for another reconstruction algorithm, and
4)  saving of the reconstructions in a standard image  format.

Fig. 9 – SNARK09Display is a graphical user interface use
 o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 424–440 435

Input: The first source of input data comes from the main
input  file for the SNARK09 run. It contains commands that
indicate  what needs to be computed and written in what for-
mat.  The second input file is the data file produced by the
previous  phase (in the same or a separate run) that contains
all  the reconstructions and the original phantom (if there is
one).

Output:  The output files depend on what the user specified
in  the original input file. They can be text files with results of
statistical  analysis and image  files with requested graphics.

3.2.  DIG  libraries

The DIG libraries are used in the creation of the projection
and  reconstruction data files produced in SNARK09 runs. They
provide  routines that can be used easily to access, extract and
modify  the data stored in those data files. Programmers who
need  to process further the projection and reconstruction data
should  use these libraries to obtain easy and safe access to
them.

3.3.  Graphical  user  interfaces

To ease the use of SNARK09, two interactive graphical user
interfaces  have been designed for creating input files and for

visualization  of projection data, reconstructions and the anal-
ysis  of the results. SNARK09Input assists users in the creation
of  input files used in SNARK09; see Fig. 8. SNARK09Display
allows users to display the outputs of a SNARK09 run; see

d for display of results obtained by a SNARK09 run.

dx.doi.org/10.1016/j.cmpb.2013.01.003
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Fig. 9. It can display 2D images of projection data and of recons-
tructions  at user-defined gray-level intensity values and plot
their  row/column profiles. It also can display graphically data
analysis  results. The images presented in the next section for
an example run of SNARK09 have all been generated using
SNARK09Display.
4.  Example  of  use

In this section we  illustrate in detail an example of how
SNARK09 can be used in practice. We present multiple

Fig. 10 – (a and b) Thorax phantom with randomly generated sm
inhomogeneity, (c and d) ART reconstruction using pixel basis fu
functions. In all cases, the image on the left uses the full display
uses a narrow display window for better visualization of the low
 b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 424–440

features of the package, but it is impossible to make use of
all  features in a single example. The reader is referred to the
SNARK09  manual [2] for the detailed listing of all the available
features  and for many  more  examples of its use. There are
ten  worked out examples in the manual with input files and
output  generated by SNARK09; these examples are provided
also  when SNARK09 package is downloaded from its website.
The  book [17] used SNARK09 and the phantom from Fig. 3b

for  demonstration of many  concepts related to computerized
tomography.

In  the example reported here, we evaluate the usefulness
of  two reconstruction algorithms for recovery of low-contrast

all low-contrast tumors in the lungs and tissue
nctions, (e and f) ART reconstruction using blob basis

 window of grayscale values while the image on the right
-contrast tumors.

dx.doi.org/10.1016/j.cmpb.2013.01.003
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Fig. 11 – Projection dataset obtained based on the thorax
phantom shown in Fig. 10(a). Each column of pixels in the
image  corresponds to a single projection.
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umors in lung tissue. The Experimenter part of SNARK09
llows us to do such an evaluation. We need to choose an
nsemble  of phantoms, one or more  figures of merit (FOMs),
nd  two or more  algorithms whose performance is being com-
ared.

Consider  the thorax phantom shown in Fig. 2(b). We mod-
fied  the phantom by adding a list of 20 pairs of possible
umor sites in the lung. The tumors are represented by
mall  circles with linear attenuation coefficients 15% higher
han  the underlying lung tissue. Furthermore, we added
nhomogeneity to the phantom to represent the biological tis-
ue more  accurately. This is done in SNARK09 by adding to
ach  pixel a random value from a zero mean Gaussian distri-
ution  with a specified standard deviation. In this case, we
sed  a standard deviation of 6% of the underlying density.
he  inhomogeneity of the tissue lowers significantly the dif-

erence  in density between the lung tissue and the tumors,
aking  it more  challenging for the algorithms to recover the

umors  correctly. During the experiment, for each pair of pos-
ible  tumor sites, the tumor is randomly placed either in the
eft  or right lung, giving us 220 possible phantoms even before
he  inhomogeneity is added. The contrast between the tumors
nd  lung tissue is so low, that when the phantom is dis-
layed  using the full range of attenuation coefficients mapped
o  grayscale values, the tumors are practically invisible, see
ig.  10(a). This is due to much  higher attenuation coefficients
or  bone and muscle tissue as compared to the lung. The tumor
ites  become visible when the display window of gray values
s  narrowed, see Fig. 10(b).

We simulated polychromatic X-rays. To do so, we used
ve  discrete energy levels. The attenuation coefficients for
ve  different energy levels are listed in Table 2. The atten-
ation  coefficients for energy of 60 keV correspond to the
nes  in the phantom description in Table 1. The projection
ata  were  obtained from 360 angles equally spaced in the
ange  [0 −−360◦) using divergent rays. Each projection con-
ained  363 rays. The collected data were corrupted by quantum
nd  scatter noise. The data were corrected for beam hardening
due  to polychromaticity of the X-ray beam) before it was used
or  reconstruction. The projections for one of the randomly
enerated phantoms are shown as columns of the image  in
ig.  11.

We  compared the two variants of the built-in ART algo-
ithm:  one using pixels, the other using blobs. We  used a
uilt-in  FOM: imagewise region of interest (IROI). The IROI FOM
as been confirmed to correlate well with human observers for
etectability of small, low density features [6]. The number of
OMs  computed for each experiment is up to the user.

Using  SNARK09 Experimenter, both versions of ART were
utomatically run thirty times, each time generating a new
hantom  and a new set of projection data based on which
econstructions were  computed. The reconstructions com-
uted  in one such run are shown in Fig. 10(c)–(f). When viewed

n  the full window of grayscale values (see Fig. 10(c) and (e))
he  two reconstructions are almost indistinguishable. The dif-
erences appear only when the images are viewed using a
uch  narrower display window (see Fig. 10(d) and (f)). After all
uns  completed, statistical significance was  computed using
he  FOM values for each reconstruction algorithm. The results
f  this statistical analysis are presented in Table 3. The table
shows average values of the figure of merit computed for
different  iterations of ART. For ART using pixels the highest
average  FOM was  obtained at the eighth iteration. For ART
using  blobs the highest average FOM was obtained at the fifth
iteration.  The last column in Table 3 shows that the differences
are  statistically significant. Thus, according to the values of
the  IROI FOM, we can reject the null hypothesis that the two
variants  of ART perform equally well for detection of small
low-contrast tumors in favor of the alternative hypothesis that
ART  using blobs performs better.

The reconstruction obtained using ART with blobs
smoothes the inhomogeneities in the lungs, resulting in an
increased  contrast between the tumors and their background.
This  can be seen in the plots of the density values along col-
umn  191 of the reconstructions and the phantom shown in
Fig.  12. In fact, the lung in the reconstruction using blobs
appears  to be smoother than in the phantom; which results in
the IROI FOM having a value greater than one. The claims of
superiority  of one algorithm over another can be made only for
the FOM that measures the task at hand. From Fig. 12 it is clear
that  the variability in the lung tissue was  not recovered well by
the ART with blobs. But recovery of the background variability
was  not the task that was  evaluated; the task was  to detect
small  low-contrast tumors and, by smoothing the reconstruc-
tion,  ART with blobs generated reconstructions with small
tumors  that are visible more  clearly than in the reconstruct-
ions  produced by the ART with pixels.

5.  Availability  and  system  requirements
SNARK09, SNARK09Input and SNARK09Display are all open
source.  They are available for download on the SNARK09 web-
site  [1] free of charge.
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Table 2 – Linear attenuation coefficients (in cm−1) as a function of photon energy for tissues that occur in the thorax
phantom.

Energy (keV) Muscle Blood Fat Lung Compact bone Soft bone Tumors

40 0.249 0.278 0.224 0.062 0.642 0.520 0.071
50 0.214 0.234 0.198 0.055 0.455 0.382 0.063
60 0.196 0.214 0.184 0.049 0.371 0.318 0.056
80 0.178 0.189 0.170 0.047 0.298 0.261 0.054

100 0.167 0.176 0.161 0.042 0.265 0.235 0.048

Fig. 12 – Comparison of the plots of the density values along column 191 through the two reconstructions (in black) and the
phantom (in gray): (a) ART with pixels and (b) ART with blobs.
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Table 3 – Statistical analysis results computed by SNARK09 experimenter for the example in Section 4. The statistical
significance of the observed differences between the performance of the pixel and blob algorithms (as measured by the
IROI FOM) was  calculated and is given in the last row.

FOM: Imagewise-ROI

ART with pixels ART with blobs Significance level

Iteration Mean Iteration Mean

1 0.2438 1 0.8386 0.00000005
3 0.7339 3 1.0320 0.00000906
5 0.8557 5 1.1144 0.00002006
8 0.8659 8 1.1043 0.00001781
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The package is a Linux/Unix based system. It runs on
 typical modern PC and has no specific hardware require-
ents.  The software libraries used by SNARK09 are provided

n  repositories of all the major Linux distributions. SNARK09 is
mplemented in C/C++, which are available on a wide variety
f  hardware and operating system platforms and are currently
mong  the most popular programming languages used by
omputer  scientists. The standard development packages that
ome  with a typical Linux distribution are sufficient to compile
nd  build the package.

.  Future  work

NARK09 is a package that is the result of more  than three
ecades  of continuous development. It evolves as the field of
omographic  reconstruction changes. There are many  aspects
f  it that can be modified and expanded. We  plan to rewrite
ome  of the existing code to make it computationally more
fficient  and to take advantage of some of the multiprocessing
ardware (multicore processors and/or graphics processing
nits)  that have become, in recent years, standard on a typ-

cal  desktop computer. We  also plan to incorporate into the
tandard  SNARK09 code new reconstruction algorithms that
e  are currently using as user-defined routines. An example
f  this is the recently developed superiorization methodol-
gy  for image  reconstruction, that has been implemented
nd thoroughly investigated within SNARK09 via user-defined
outines; see, e.g., [38,39].
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200 MeV Proton Radiography Studies with a Hand
Phantom Using a Prototype Proton CT Scanner

Tia Plautz, V. Bashkirov, V. Feng, F. Hurley, R.P. Johnson, C. Leary, S. Macafee, A. Plumb, H.F.W. Sadrozinski,
K. Schubert, R. Schulte, B. Schultze, D. Steinberg, M. Witt, A. Zatserklyaniy

Abstract—Proton radiography generates two-dimensional pro-
jection images of an object and has applications in patient
alignment and verification procedures for proton beam radiation
therapy. The quality of the image, both contrast and spatial
resolution, is affected by the energy of the protons used in the
creation of the radiograph, as well as by multiple Coulomb scat-
tering and energy-loss straggling. Here we report an experiment
which used 200 MeV protons to generate proton energy-loss and
scattering radiographs of a hand phantom. It was found that
while both radiographs displayed anatomical details of the hand
phantom, the energy-loss radiograph has a noticeably higher
spatial resolution. The scattering radiograph may yield sharper
edges between soft and bone tissue than energy loss radiograph,
but this requires further study. These radiographs demonstrate
the new promise of proton imaging (proton radiography and
CT) now within reach of becoming a new, potentially low-dose
medical imaging modality. The experiment used the current first-
generation proton CT scanner prototype, which is installed on
the research beam line of the clinical proton synchrotron at Loma
Linda University Medical Center. This study contributes to the
optimization of the performance of a clinical proton CT scanner.

Index Terms—proton imaging, tomographic reconstruction of
material properties, spatial resolution, data reduction

I. INTRODUCTION

With increasing use of proton radiation therapy for cancer
patients, research into new imaging methods that can improve
the accuracy of proton range estimates in radiation therapy
planning have become a high priority. Protons are particularly
desirable for treating cancerous tissue in close proximity to
radiosensitive normal tissues, such as at the base of skull
and near the spinal cord. Protons are preferable to photons
because their energies are easily tuned, the unhealthy area
can be isolated, and the dose can be localized reducing the
threat of damaging otherwise healthy tissue. Most importantly,
the greatest radiation dose occurs only in the last 2% of the
proton’s range, at the Bragg peak, so a maximum amount of
healthy tissue can be spared when the position of the Bragg
peak is controlled.
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In order to obtain relative stopping power (RSP), Hounsfield
units (i.e. units of x-ray attenuation used in x-ray CT) are trans-
formed using a calibration curve. However, there is no unique
relationship between Hounsfield units and RSP, especially in
the regime of RSP=1 (i.e. water, human tissue). This means
that during conversion, errors in proton range are consistently
3-4% of the nominal proton range or even higher in regions
containing bone [1]. A recent survey by the American Asso-
ciation of Physicists in Medicine (AAPM) showed that 33%
of attendees polled said that range uncertainties are the main
obstacle to making proton therapy mainstream [2]. Simulations
and first experimental results have shown that using a proton
CT imaging system one may be able to reduce this range
uncertainty to about 1% or less without increasing the dose to
the patient.

Proton CT differs in several key aspects from x-ray CT.
While unscattered photons travel in straight line paths, protons
do not and rather undergo many multiple Coulomb scattering
(MCS) events, which limits the usefulness of the standard
filtered back projection (FBP) approach to reconstruction.
In fact, proton CT images reconstructed with the classical
FBP algorithm suffer from loss of spatial resolution since
the proton path deviates from the assumed straight lines by
up to several millimeters in anatomical objects encountered
in medical proton CT imaging. The accuracy of those path
estimates is critical for achieving a high spatial resolution in
proton CT.

A. Current Prototype Design

A low intensity, high energy (100-200 MeV) cone beam of
protons traverses a phantom. Silicon strip detectors (228 µm
pitch) record the proton path in 4 planes (each 400 um thick)
so entry and exit vectors can be easily determined. Detec-
tors interface through a high speed field programmable gate
array (FPGA)-based data acquisition system. A calorimeter
composed of an array of 18 CsI crystals is used to detect the
residual energies of incident protons at a rate of up to 100k
protons/sec.

B. Reconstruction Software

Mathematical algorithms and computer software are used to
reconstruct the phantom from raw data [3]. Raw data contain
the proton tracker coordinates and the calorimeter’s response
for each proton. The software bins the exit tracker data into
spatial bins (pixels) and determines cuts in relative angle,
defined as the difference between entry and exit angle, at 3σ



Fig. 1 – First radiograph of a
hand phantom with 0.5 mm
pixels (scale in cm of WEPL).
The RSP of bone is only about
50% greater than that of water,
resulting in the low contrast
between the bones and soft tis-
sue. The line traversing the im-
age corresponds to the image
profile analyzed in Fig. 4.

from each pixel’s mean relative scattering angle. These cuts are
made to exclude events that have very large scattering angles,
caused by inelastic nuclear interactions or elastic large angle
scattering events inside the phantom. The software also makes
cuts in water equivalent path length (WEPL) given by:

L =

∫
`

%d`, (1)

where % is the ratio of the stopping power of the material to
the stopping power of water (i.e. the RSP) and ` defines the
path of the proton. These cuts are also made at 3σ from the
mean pixel value, and are necessary to insure that erroneously
large energy measurements, caused by the coincidence of two
or more particles in the calorimeter, are excluded.

II. ENERGY-LOSS RADIOGRAPHY AND WATER
EQUIVALENT PATH LENGTH (WEPL)

The quantity of importance for proton treatment planning is
relative stopping power (RSP) of protons with respect to water.
RSP, or % in Eq. 1, is practically energy independent and is
determined mostly by the electron density of the material or
tissue.

We calibrate the calorimeter response to the integral of the
RSP directly. For each pixel, we define a mode window of
WEPL that accepts protons within ± 30% of the mode, or
±1 cm if 30% is less than 1 cm, and make the appropriate
cuts during reconstruction. Fig. 1 is a radiograph of a hand
phantom using this energy-loss technique and data reduction
process.

The WEPL distribution of protons in each pixel is roughly
gaussian, as seen in Fig. 3(a). The distribution is usually
skewed to the right (high WEPL) which corresponds to the
left-skewed (low-energy) distributions in energy. The protons
in the tails are protons that underwent nuclear scattering
events. These are the events that we wish to reduce by
appropriate cuts.

Fig. 2 – Radiograph of a hand phantom (Fig. 1) in
terms of water equivalent thickness (WET) calculated
from the summed-up stopping power of the phantom. The
image shows the varying thickness of the hand and clear
structural details. The scale on the right hand side is in
cm.

We did find that a significant percentage of pixels contained
non-gaussian, or anomolous WEPL distributions. These distri-
butions, as in 3(b), are bimodal and correspond to pixels that
lie on the boundary between two materials of different RSP.
Currently, the reconstruction algorithm selects the mode that is
closest to the mean, and the appropriate cuts are determined
based on that value. This, however, ignores valuable infor-
mation and leads to lower spatial resolution. Methods such
as averaging the two modes, or “splitting” pixels have been
proposed and have yet to be explored.

An image of the radiographic hand phantom in terms of
WEPL (Fig. 1 and 2) was created by plotting values of WEPL
for each pixel (in cm). The image clearly depicts the varying
thickness of the hand in different places, and shows clear
structural details. The agreement between this image and the
phantom shows that there is great promise in our technique.

As a further exploration of WEPL, we investigated ra-
diographs of various pixel sizes: 1-mm, 0.5-mm, 0.25-mm.
The plots in Fig. 4 illustrate the image profile along the line
indicated in Fig. 1 for the various pixel sizes. Fig. 4 shows
that as pixel size is systematically decreased, the steepness
of the slope of the image profile increases from a relatively
shallow incline in the 1-mm (pixel size) plot to a steep rise
from 0 to 1 cm of WEPL in the 0.25-mm plot, due to the
improved spatial resolution with smaller pixel size. However,
decreasing the size of the pixel also increases the amount of
spatial noise added to the profile, due to the lower statistics
(fewer protons in each pixel). While some regions of the 0.5
mm and the 0.25 mm plots are relatively sharp, other regions
are entirely washed out with almost no way to tell what the
signal actually is. One can increase the number of protons,
but this will increase the dose to the patient, which should be



(a)

(b)

Fig. 3 – Distribution in WEPL for pixels described
by the coordinates 3(a) (v = 29, t = 103) and 3(b)
(v = 61, t = 59) before cuts are made. The black
line defines the mode of the distribution and the red
line defines the mean or “peak” of the distribution. The
blue lines indicate the mode window which contains the
particles within ±30% of the mode, and provides the
distribution on which the 3σ cuts are based. The green
lines indicate the cuts made on this specific pixel. Notice
the straggling in the large WEPL range. These values
correspond to particles that underwent nuclear interac-
tions. Fig 3(a) illustrates an example of a roughly gaussian
WEPL distribution. Fig. 3(b) is that for a boundary pixel
with a bimodal WEPL distribution.

kept as small as possible due to the small risk of secondary
cancer. This analysis suggests that, for a given dose, there
is an ideal pixel size which will provide a balance between
spatial resolution and dose. We have found that at least 20
protons/pixel are required for reasonable statistics.

III. MULTIPLE COULOMB SCATTERING AND PROTON
SCATTERING RADIOGRAPHY

The amount that a proton is scattered between its entry and
exit from a phantom is proportional to the inverse of its energy
and can be described by the Lynch-Dahl approximation for
multiple scattering events [4]:

θ =
13.6eV

βcp
z

√
x

Xo
[1 + 0.038 log

x

Xo
] (2)

where θ is the width of the Gaussian approximation for angular
deflection in a plane, β, p are the velocity and momentum of

(a) 1-mm pixels

(b) 0.5-mm pixels

(c) 0.25-mm pixels

Fig. 4 – Image profiles for 1-mm, 0.5-mm and 0.25-
mm pixels. Profiles show that as pixel size is decreased
from 1-mm (Fig. 4(a)) to 0.5-mm (Fig. 4(b)), the spatial
resolution increases (i.e. the details become more clear).
Further reducing the pixel size seems only to increase
statistical noise in the image (Fig. 4(c)). An ideal pixel
size must be found that maximizes spatial resolution
while minimizing dose delivered to the patient.

the proton, respectively, z is the charge of the proton and x/Xo

is the thickness of the material traversed in radiation lengths,
where we calculate Xo of the material using:

1

Xo
=

∑ wj

Xj
(3)

where the wj’s are the fractions by weight of each element in
a given material. The second term in Eq. 2 tends to be small
and can thus be ignored for purposes of estimation. Note that
this approximation is good only for relatively thin objects (i.e.
10−3 < x/Xo < 100) where the energy and momentum are
assumed to be approximately constant. For a thicker phantom,
we must account for energy-loss by introducing an integral
over x (see Ref. [5] for details).

A scattering radiograph (scale in mrad) is given in Fig.
5. A gaussian distribution of scattering angles in each of
the t (vertical) and v (horizontal) planes in each pixel was
obtained. The mean v and t angles were determined in each



Fig. 5 – This scattering
radiograph shows a strong
agreement between pre-
dicted thickness given by
Eq. 2 and the thickness
of real materials. Varia-
tion in the thickness of
the hand is clearly visi-
ble. Regions of dark or-
ange and black are those
corresponding to thick re-
gions of bone. Blue region
in the background corre-
sponds to the scattering
due to SSD’s alone. Scale
is in mrad.

pixel from these distributions. These mean angles were added
in quadrature in order to obtain the mean spatial scattering
angle, defined as the angle of scattering from the beam axis.
Areas of high scattering power, such as bone, were expected to
yield greater scattering angles, while protons scattered only by
SSDs were expected to have the smallest scattering angle. The
scattering angle value was then compared with the expected
scattering estimated using Eq. 2.

TABLE I – Densities and radiation lengths of
materials commonly encountered in pCT. Data for
bone: [6]. Data for tissue, water and silicon: [7]

Material Density
(g/cm3)

Radiation Length,
Xo (g/cm2)

bone 1.45 16.6
tissue 1.00 38.2
water 1.00 36.1
silicon 2.33 21.8

Table I provides radiation length values for material that
we typically deal with in medical proton imaging. For a 200
MeV proton, β = .566 and p = 644 MeV/c, and therefore, by
Eq. 2, the scattering due to the four silicon tracker plates (1.6
mm total thickness) is expected to be approximately 5.2 mrad.
Comparing this estimate with the background (blue) region in
Fig. 5, we find that this estimate agrees well with the image,
which depicts scattering of 5-6 mrad due to the SSD’s alone.

While the spatial resolution of the scattering radiograph is
not as good as with the energy-loss radiograph, one can still
observe regions of varying thickness around the edges of the
fingers, where the protons traversed only skin and soft tissue
(yellow and green region), and in the hand, where the thickest
bone exists (black region). The scattering angles correspond
to realistic proton path lengths through the hand.

A remarkable aspect of scattering radiography is that the
contrast between bone and soft tissue for proton scattering
power is, in principle, higher than that of proton stopping

Fig. 6 – Normalizing the scattering radiograph (solid
curve) to the energy-loss radiograph (dashed curve), we
see roughly the same shape and even some subtle features,
however these are quite a bit washed out. The profile
slopes of the scattering radiograph in the bottom plots
are shallower, indicating reduced spatial resolution.

power. The stopping power of bone is 50% - 80% greater
than that of water, but the scattering power of bone is
about 2.5 times that of water. Fig. 6 compares two image
profiles for the energy-loss radiograph (dashed curve) and
the scattering radiograph (solid curve). When the scattering
curve is normalized to the energy-loss curve, we find that
the general shapes of the two curves of each plot are almost
identical, which shows that in this case, regions of greater
stopping power are also regions of higher scattering power.
The energy-loss curve clearly provides higher spatial resolu-
tion, but more importantly, it provides the RSP information
required for treatment planning. The scattering radiograph,
however, may provide us with higher contrast resolution, since
contrast depends upon the difference in material properties of
those materials being imaged. Information about the radiation
length of the material, Xo can be gleaned from the scattering
radiograph and can provide us with the the effective atomic
number of the material, Z (which is inversely proportional
to the radiation length). The quality and usefulness of this
information, however, requires further investigation.

IV. CONCLUSION

Our proton radiographs demonstrate the new promise of
proton imaging (proton radiography and CT) now within reach
of becoming a new, potentially low-dose medical imaging
modality. This work indicates that choosing an optimal pixel
size is important for balanced image quality in terms of low-
contrast and spatial resolution. The image profile comparison
suggests that scattering radiography may yield sharper edges



(greater contrast) between soft and bone tissue than energy
loss radiography, alone. However, this requires further study.
Scattering radiography (like x-ray radiography) does provide
information about the radiation length of materials which is
inversely proportional to the effective atomic number distribu-
tion in the tissue. Energy-loss radiography cannot provide this
information since stopping power depends only on Z/A which
is practically identical for most soft tissues and water, leading
to very low contrast. Therefore, scattering radiography will
likely have useful applications in proton treatment planning.
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Parallel Algorithms for Intensity
Modulated Proton Radiation Therapy

PIs: Reinhard Schulte, Yair Censor, Ran Davidi, John DeMarco, Keith E. Schubert
Graduate Students: Aarohi Padhye, Tai Dou

1 Scope

The purpose of this document is to describes the scientific background of a
multi-institutional project on intensity modulated proton therapy, including
mathematical formulations pertinent references relevant to this project.

2 Background

2.1 Principles of IMpRT

Intensity modulated proton radiation therapy and radiosurgery, short IMpRT
and IMpRS, are evolving techniques for highly conformal dose delivery to
tumor or other targets in close proximity to sensitive and critical organs at
risk. IMpRT is delivered in several dose fractions, while IMpRS is delivered
in as a single dose or a few (up to 5) dose fractions applying stereotactic
techniques. The underlying principle of these techniques is to aim at the
target from many different directions (either in 2D or 3D) with multiple
narrow proton beams, or pencil beams, and to modulate the intensity (or
fluence) of each beam, taking into account whether they pass through critical
organs at risk or not. The most important characteristic of a proton beam is
that it delivers a low dose in the initial part of the beam followed by a rapid
increase of dose, leading to a dose peak (the Bragg peak) and a rapid distal
dose fall-off to zero dose behind the Bragg peak. The Bragg peak is placed
inside the target at a given beam aiming point. Note that several pencil
beams sharing the same central axis can be ”stacked” in beam direction, and
this arrangement may be called a beamlet.

The starting point of each IMpRT/RS calculation is a digital model of the
patient volume of interest, e.g., the patient’s head, usually provided by a com-
puted tomography (CT) scan. A head CT scan consists of about 200 slices
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of 1-2 mm thickness and each slice is organized into a matrix of 512 × 512
image pixels. In 3D, this creates a digital space comprised of the order of
50 million voxels. Each voxel has material properties that are needed to
calculate the proton dose delivered by the different proton pencil beams.

In practical applications, one generates a generic pencil beam dose model
for a unit-intensity proton beam in water and scales the distance between the
entry point of a proton beam into the object and the beam aiming point by
multiplying the intersection length of each voxel with the so-called relative
stopping power (RSP) with respect to water. This information is provided
by converting the numbers provided by the CT scan (Hounsfield units) to
RSP, using a HU-to-RSP calibration curve. In the future, the RSP of voxels
will be directly reconstructed from a proton CT (pCT) scan. Knowing the
central beam axis dose as a function of depth in water, one can then assign
the correct dose of the unit-intensity proton pencil beam to each voxel on
the central beam axis. Similarly, knowing the lateral dose fall-off at each
depth, one can calculate the correct dose for each off-axis voxel based on its
orthogonal distance from the beam axis.

Given a distribution of the intensities of in the limit, continuously spaced
proton pencil beams directed at the target, one can calculate the resulting
dose distribution in the voxels of the object using a proton dose operator D
that mathematically connects the two quantities. Often times, the chosen
intensities do not result in a satisfactory dose distribution, i.e., one that
meets the dose constraints dictated by the radiosensitivity of the tumor and
the organs at risk. In general, one wants the target dose to exceed some
minimum value and the dose in organs at risk not to exceed a maximum value
that can lead to serious complications. Therefore, it is better to ”prescribe”
a dose distribution selected from a subset in a continuum of possible dose
distributions that meet the clinical requirements and then to find a fluence
distribution that that will lead to a dose distribution that is a member of this
”solution” subset. As we will see below, the solution of such an ”inverse”
treatment planning problem can be found mathematically by formulating a
discrete mathematical model of IMpRT that can be solved, in principle.

2.2 The discrete model of IMpRT

In the absence of a closed-form analytic representation of the proton dose
operator D that calculates the dose distribution given a the fluence of an
continuum of proton pencil beams, and, therefore, the absence of such a
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Figure 1: Two IMpRT beams from different directions. Variable shades of
gray correspond to different fluences (number of protons per area). Note
that each square in the beam cross section can be occupied by more than
one proton pencil beam, making up a beamlet, each with a different Bragg
peak depth and intensity.

presentation of its inverse operator D−1, one must resort to a fully-discretized
model of the problem. The term full in “fully-discretized model” refers to the
fact that both the external proton radiation field and the patient volume are
discretized, leading to a problem formulated in a finite-dimensional vector
space. To do this we divide the beam’s cross-section into a finite rectangular
grid of squares and the beam angles into discrete angular steps separated by a
constant interval, which may be chosen differently for each IMpRT treatment
plan (see Figure 1). Further, we discretize the proton energy into steps, such
that the proton Bragg peaks, i.e., the dose maximum of a proton pencil beam,
are located at well-defined discrete aiming points within the patient volume.
Each proton pencil beam is thus assigned a discrete direction and a discrete
energy.
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Figure 2: Example of a CT head section before (left) and after conversion to
a color-coded image that gives each voxel a tissue assignment (right).

Figure 2 (left) shows a representative two-dimensional (2D) cross-section
through the object. In a contiguous set of cross-sections, the treatment
planner defines a set of voxels that belong to the target. Other voxels sets
may be defined that are assigned to an organ at risk, e.g., the brainstem, or
other normal tissue regions, such as brain and skull bone. In order to simplify
the image segmentation process and to calculate the dose of unit-intensity
beams, each image of the CT data set needs to be processed in order to assign
a given tissue type to each voxel based on the CT (HU or RSP) value. This
is shown in Figure 2 (right).

2.3 Mathematical formulation of the discrete IMpRT
model

The patient volume Ω is divided into a discrete grid of voxels the centers
of which are the desired dose calculation points. These are represented by
the family of triplets of 3D coordinates {(rj) | j = 1, 2, . . . , J}. Further, we
define a discrete number of proton pencil beams by their entry direction unit
vectors {vi | i = 1, 2, . . . , I}. and aiming point {(r̂i) | i = 1, 2, . . . , I}.

Let aij be the dose deposited at the jth grid point (rj) in the patient
volume Ω due to the ith pencil beam (r̂i, vi) of unit proton fluence and define
the I-dimensional vector aj = (aij)

I
i=1 for j = 1, 2, . . . , J. Let xi denote

the actual (yet unknown) fluence of the ith pencil beam (r̂i, vi) and define
the I-dimensional vector x = (xi)

I
i=1 which is unknown vector of all pencil
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beams’ fluences that should deliver the required dose to the patient volume Ω.
Finally, let dj and dj be an upper-bound and a lower-bound, on the permitted
or required, respectively, dose in the jth grid point (rj) in the patient volume
Ω.

With these notions we can define discrete forward and inverse problems of
IMpRT as follows.

The discrete forward problem of IMpRT: Given a patient volume Ω,
whose physical properties are known, and a discretized (into I proton pencil
beams) external proton radiation field {(r̂i, vi) | i = 1, 2, . . . , I}, along with
a proton pencil beams intensity vector x, find the discretized proton dose
distribution function D(rj) for all (rj) ∈ Ω.

This discrete forward problem can be solved if all I-dimensional vectors
aj = (aij)

I
i=1 for j = 1, 2, . . . , J, are known to us, e.g., by having been pre-

calculated by a forward problem solver computer package. In that case,
denoting dj = D(rj, θj) for all j = 1, 2, . . . , J, we just need to calculate

I∑
i=1

aijxi = dj, j = 1, 2, . . . , J. (1)

The J-dimensional vector d = (dj)
J
j=1, whose components are the discretized

proton dose distribution function D(rj) values, is called a dose vector.
The discrete inverse problem of IMpRT: Given are a patient volume

Ω, whose physical properties are known, an upper-bound dose vector d =
(dj)

J
j=1 and a lower-bound dose vector d = (dj)

J
j=1, on the permitted and

required, respectively, doses at the grid points {(rj, θj) | j = 1, 2, . . . , J} in
the patient volume Ω. Find a proton pencil beams fluence vector x such that

dj ≤
I∑

i=1

aijxi ≤ dj, for all j = 1, 2, . . . , J and xi ≥ 0 for all i = 1, 2, . . . , I.

(2)
This formulation of the discrete inverse problem of IMpRT does not aim

at a proton pencil beams fluence vector x that will deposit a fixed prescribed
dose in each voxel but rather calls for a solution of that is called in optimiza-
tion theory the solution of a linear feasibility problem. The term “feasibility”
refers here to the fact that no exogeneous objective function is set up for opti-
mization but rather any point in the feasible set {x ∈ RI | dj ≤

∑I
i=1 aijxi ≤

dj, for all j = 1, 2, . . . , J} will be “acceptable” by the treatment planner.
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This feasibility approach to setting up the discrete inverse problem has its
roots in some early papers on radiation therapy treatment planning where
the term IMRT was even not used, see [1, 5, 6, 7].

The J individual linear feasibility constraints of (2) can be grouped ac-
cording to volumes of interest in the patient volume Ω.

3 Scientific Tasks

The graduate students will support the development of the Geant4 beam
libraries (Tai) of a GPU-based platform for testing new algorithms (Aarohi)
that solve the discrete inverse problem of IMpRT. A brief summary and
motivation of each task is provided below.

3.1 Identification and Storage of Volumes of Interest

The starting point for IMpRT calculations is a CT image set, as described
in the background section. The images are in DICOM format, which is a
standardized medical imaging format. Within this image set, the physician
defines the boundaries of volumes of interest (VOIs) in pertinent slices. This
task is usually performed with a commercial computer treatment planning
program. The program provides the tools to draw the VOI regions in indi-
vidual slices and to display them as overlay on the original CT images. The
program also outputs a standardized DICOM RT structure set that contains
the geometrical information of the VOI boundaries.

The students will import the DICOM image data as well as the DICOM RT
structure set file into a Matlab program. Matlab interprets the image set as
a hypermatrix of 512 × 512 matrices that contain the numerical voxel values
(in HU) as elements. The students need to develop software that stores the
information of which voxel indices belong to each VOI in condensed sparse
row format. This information will later be needed to assign the individual lin-
ear feasibility constraints to the correct voxels according to their assignment
to VOIs.

3.2 CT Image Segmentation

For the forward dose calculation, it is necessary to assign different regions in
the CT images to different materials, in this case to different human tissues.
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The simplest way to do this is to define HU intervals and assign them to
a specific tissue, as shown in Table 1, which is the conversion table for a
pediatric head phantom with 9 different tissue types. However, as can be
seen in Figure 2, this assignment is not always perfect due to the presence of
noise and artifacts in the CT images.

The students will develop a program that finds the boundaries between
different tissue regions and will assign voxels inside these boundaries to the
correct materials. The voxel volumes are generally small enough to ignore
partial volume effects, i.e., individual voxels will be assigned only one material
type.

Table 1: Tissue categorization according to HU value.

HU Interval Tissue

[−1000,−800) air
[−800,−700) sinus
[−700, 40) soft tissue
[40, 90) brain
[90, 150) spinal disc
[150, 200) trabecular bone
[200, 1000) cortical bone
[1000, 2000) tooth dentin
≥ 2000 tooth enamel

3.3 Interface to Geant4 Program Output

Geant4 is a toolkit written in C++ code that performs radiation transport
calculations. The students will obtain a source model for the Geant4 forward
dose calculations. Geant4 will provide a dose model for a standard library of
proton pencil beams in water with energies between 60 MeV and 160 MeV in
10 MeV steps. The students will also develop a program that creates an array
of beaming aiming points for each of a set of beam directions. The program
will then calculate the water equivalent depth of each point by multiplying
beam axis intersection lengths by the assigned relative stopping power (RSP)
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for each voxel on the central beam path. In addition the water-equivalent
distance of voxels lateral to the central beam axis will need to be calculated.

4 Potential for Publications

The development of the beam libraries and computing platform will be re-
ported by the students at scientific meetings in computer science and medical
physics fields. This will typically lead to abstracts and conference papers with
the students being the first author (depending on the type of conference).
The aim is to also publish a series of original papers with on solution algo-
rithms developed by Ran and Yair with postdoc Ran Davidi as first author
and students as co-authors. There could well be other original papers written
by students on spin-off projects resulting from the main project.
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Materials and Methods  
We model a given IMRT problem as a linear feasibility one, by 
formulating the constraints into upper- and lower-bounds 
vectors. The bounds are set and depend whether the 
constrained volume is a target or an organ at risk (OAR). The 
bounds reflect the dose acceptance criteria, which are 
determined by the treating physician and reflect generally 
accepted dose guidelines. A projection method that is 
perturbation-resilent aims at solving this linear feasibility system 
of hyperslabs constraints. This feasibility-seeking algorithm 
uses the resiliency to perturbations to steer the iterates to a 
superior feasible point with respect to an objective function. 
Here we use ART for inequality constraints and total variation 
(TV) [2] of the beam intensity  space as  the  objective  function. 
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Introduction and Objective 
Computationally demanding numerical minimization techniques 
are often used in IMRT treatment planning, but the commonly 
employed cost functions and corresponding solution 
approaches are not necessarily the most appropriate for 
achieving the desired dose behavior.  This disconnect occurs 
because minimal solutions to current cost function formulations 
are not guaranteed to provide the necessary dose coverage, 
conformality, or homogeneity. Therefore, the considerable 
computational cost associated with some of these minimization 
techniques may not be justified.  

We propose a novel superiorization approach that substantially 
improves computational tractability by producing a solution with 
reduced, but not necessarily minimal, value of the defined cost 
function that is guaranteed to satisfy the given IMRT planning 
constrains. Superiorization is a new paradigm that can be 
viewed as lying in-between feasibility-seeking for the dose 
constraints and full-fledged constrained minimization of the cost 
function subject to these constraints. This method is based on 
the discovery that many feasibility-seeking algorithms are 
perturbation-resilient, and superiorization proactively steers the 
feasibility-seeking projection method towards a feasible solution 
of the dose constraints with a reduced, but not necessarily 
minimal, cost function value.  

The superiorization method produces "superior feasible 
solutions" and can replace current IMRT constrained 
minimization methods, potentially leading to shorter 
computational times and improved dose distributions. 

 

 

 

Our proposed method successfully produced conformal solutions that met the acceptance 
criteria while that an otherwise identical algorithm without superiorization failed to do so with 
the same number of iterations. Future work will assess the computational gain of the 
superiorization method compared to a conventional one and investigate the utility of it for a 
computationally more complex problems such as Volumetric Modulated Arc Therapy (VMAT). 

Fig. 1: Pseudocode of the Superiorization Algorithm. The complete superiorization algorithm is provided in the pseudocode (Fig. 1) and is based 
on [2]. 

How superiorization works: The algorithm starts from an arbitrary point. In lines 7-17 it 
perturbs the current point N times. A nonascending vectoris computed in line 8 and the 
perturbation is performed in line 13 with some step size β. The value of the objective function 
Φ is assessed in line 14 to make sure that the perturbation superiorized (obtained a lower 
value) the objective function compared to the previous point. At the end of the N perturbation 
steps, the projection method is applied and a new point is obtained. The process repeats until 
the acceptance dose criteria is met.   

IMRT plan: The anonymized pelvic planning CT of a prostate cancer patient was employed 
for the IMRT treatment planning using the proposed method. Seven equispaced fields were 
used for targeting the PTV. The dose constraints were set using the RTOG 0815 randomized 
trial protocol [3].  

Results  

We have initially tested this new approach by comparing the TV-superiorization algorithm 
with an otherwise identical algorithm that aimed at only satisfying the dose constraints 
without applying superiorization. We performed two experiments with different starting 
conditions. For the first experiment, we started the algorithm with the zero vector of dose 
weights and for the second experiment all dose weights were given the value 10. Table 1 
summarizes the results for the two experiments and in Fig. 2 we present the associated DVH 
curves. For the first experiment, the TV-superiorization produced a solution that met the 
acceptance criteria after 12 iterations whereas the conventional algorithm was not able to 
reach an acceptable solution after this number of iterations. For the second experiment, the 
superiorization algorithm reached an acceptable solution even faster, i.e., after 7 iterations, 
and the conventional algorithm again failed some of the acceptance criteria after this number 
of iterations. 

Acceptance criteria 
 

Exp 1 with 
superiorization 

Exp 1 without 
superiorization 

Exp 2 with 
superiorization 

Exp 2 without 
superiorization 

PTV min allowed dose (95% of 
prescribed dose) is 75.24 Gy 75.24 Gy 56.13 Gy 77.80 Gy 76.15 Gy 

PTV max allowed dose: 84.74 Gy 84.69 Gy 89.42 Gy 84.71 Gy 87.63 Gy 
Rectum – No more than 
50% volume receives dose 
that exceeds 60.00 Gy 

34.50 % 8.50 % 36.90 % 40.50 % 

Rectum – max dose 82.64 Gy 82.71 Gy 84.09 Gy 87.25 Gy 

Fig. 2: Dose Volume Histograms (DVH) of the two experiments. Solid 
lines represent the algorithm with TV-superiorization (broken lines 
represent no superiorization). The first (top) took 12 iterations and the 
second (bottom) took 7 iterations. Exact numbers are given in Table 1. 
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Superiorization of Projection Methods
Applied to Radiation Therapy Treatment

Planning

Ran Davidi

Department of Radiation Oncology, Stanford University,
Stanford, CA, USA

In Radiation Therapy Treatment Planning applications, such as IMRT
and VMAT, the main objective is to deliver precise radiation doses to a ma-
lignant tumor while sparing the surrounding normal tissues. Minimization
techniques are often used as the main tool for the inverse treatment planning.
They commonly employ the minimization of an objective function subject to
a set of dose constraints. These methods often produce a solution that is
not guaranteed to provide the necessary dose coverage and conformality that
is required for a successful treatment and are executed with a high computa-
tional demand. Satisfying only the dose constraints on the other hand, can
be implemented quite e¢ ciently using projection methods, however, these
methods are lacking the machinery of a reduction of an objective function
value.
Superiorization is a new paradigm that aims to bridge the gap between

these two approaches of optimization and feasibility-seeking methods. It uti-
lizes the fact that many projection methods are perturbation resilient and
steers the process in the direction of a lower objective function value while
satisfying the dose constraints of the problem. We present how superioriza-
tion can be applied to the inverse planning problem in radiation therapy and
demonstrate its e¢ cacy on prostate patient data.

Acknowledgement: This work is supported by the U.S. Department
of Defense Prostate Cancer Research Program Award No. W81XWH-12-1-
0122.
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09:05 -- 10:00 Andrzej Cegielski: Methods for the split common fixed point
problem

10:00 -- 10:30 Coffee break

10:30 -- 11:30 Simeon Reich: Porosity and the bounded linear regularity
property

11:30 -- 12:30 Ran Davidi: Superiorization of projection methods and their
use in medical applications

12:30 -- 14:00 Lunch break

14:00 -- 15:00 Aviv Gibali, Projection-based scheme for solving convex
constrained optimization problems

15:00 -- 16:00 Rafiq Mansour: The cyclic Douglas-Rachford algorithm

16:00 -- 16:30 Open forum and closing of the meeting

Titles, Speakers (in alphabetical order) and Abstracts:

Title: Methods for the split common fixed point problem

Speaker: Andrzej Cegielski, University of Zielona Gora, Poland

Abstract: We present a general method for solving a split common fixed
point problem in Hilbert spaces, with an application of strongly quasi-
nonexpansive operators satisfying the demi closedness principle. We present a
general convergence theorem and show that the known methods satisfy the
assumptions of this theorem.

------------------------

Title: Superiorization of projection methods and their use in medical
applications

Speaker: Ran Davidi, Stanford University, California, USA

Abstract: Computationally demanding numerical minimization techniques
are often used in medical applications such as radiation therapy treatment
planning and computerized tomography. They often employ cost functions
and corresponding solution approaches that are not necessarily most
appropriate for achieving the desired solutions. This disconnect occurs
because minimal solutions to current cost function formulations are not
guaranteed to provide the optimal solution from the point of view of the
application. Therefore, the considerable computational cost associated with
some of these minimization techniques may not be justified. Superiorization
is a new paradigm that substantially improves computational tractability by
producing a solution with reduced, but not necessarily minimal, value of a
defined cost function that is guaranteed to satisfy the constraints of the
problem. The ability to do so stems from the fact that many feasibility-
seeking projection methods are perturbation-resilient which enables to steer
the process to a solution with a reduced (i.e., superior) cost function value. In
this talk we present how superiorization can be applied to real-world
applications and demonstrate its usefulness with a few examples taken from
the medical field.

--------------------------

Title: projection-based scheme for solving convex constrained optimization
problems

Speaker: Aviv Gibali, Fraunhofer Institute for Industrial Mathematics
(ITWM), Kaiserslautern, Germany

Abstract: In this talk we present a new projection-based scheme for general
convex constrained optimization problem. The general idea is to transform the
original optimization problem to a sequence of feasibility problems by
iteratively constraining the objective function from above until the feasibility
problem is inconsistent. Then, for each of the feasibility problems one may
apply any of the existing projection methods for solving it, which are known
to be very efficient and practical. Some numerical experiments to illustrate the
performance of the suggested scheme.

---------------------------
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Title: The cyclic Douglas-Rachford algorithm

Speaker: Rafiq Mansour, University of Haifa, Israel

Abstract: The Douglas-Rachford (DR) algorithm is a projection method for
finding the projection of a point onto the nonempty intersection of two sets. It
draws great attention in the literature recently. We review recent results on the
cyclic Douglas-Rachford algorithm which extends the DR algorithm to handle
a family of n sets. Our presentation is based on a recent paper on this topic by
J.M. Borwein and M.K. Tam.

-----------------------------

Title: Porosity and the bounded linear regularity property

Speaker: Simeon Reich, The Technion, Israel

Abstract: H. H. Bauschke and J. M. Borwein showed that in the space of all
tuples of bounded, closed and convex subsets of a Hilbert space with a
nonempty intersection, a typical tuple has the bounded linear regularity
property. This property is important because it leads to the convergence of
infinite products of the corresponding nearest point projections to a point in
the intersection. We show that the subset of all tuples possessing the bounded
linear regularity property has a porous complement. Moreover, our result is
established in all normed spaces and for tuples of closed and convex sets
which are not necessarily bounded.

This is joint work with A. J. Zaslavski.

Wednesday the 18th -Home Page How to get here Contact Us F.A.Q. Search

http://www.cri.haifa.ac.il/
http://cri.haifa.ac.il/index.php/how-to-get-here
http://cri.haifa.ac.il/index.php/contuct-us
http://cri.haifa.ac.il/index.php/faq
http://cri.haifa.ac.il/index.php/search


List	
  of	
  personnel	
  receiving	
  pay	
  from	
  the	
  research	
  effort:	
  
	
  
-­‐	
  Ran	
  Davidi	
  (PI)	
  


	report_draft_5
	FinalReport_W81XWH-12-1-0122_RanDavidi_PI_final
	Full_Form_SF298UnlimitedDistributionA_filled_FInalReport
	Binder2.pdf
	MP paper - Superiorization - published
	JOTA-(compare paper) - published
	Projected Subgradient Minimization Versus Superiorization
	Abstract
	Introduction
	Motivation and Basic Notions
	Superiorization-Related Previous Work
	The Superiorization Methodology
	A Computational Demonstration
	The x-Ray CT Problem
	The Algorithms that We Use
	The Projected Subgradient Method
	The Superiorization Method

	The Computational Result

	Conclusions
	Acknowledgements
	References


	con-math-paper-RD-YC-RWS-SG-LX-submitted-031213
	Snark09Paper_published
	SNARK09 – A software package for reconstruction of 2D images from 1D projections
	1 Introduction
	1.1 Features of the package
	1.2 Related work
	1.3 Outline of the rest of this paper

	2 Computational methods and theory
	2.1 Creation of a phantom
	2.2 Data collection
	2.2.1 Computation of ray sums
	2.2.2 Geometry of data collection
	2.2.3 Simulating CT
	2.2.4 Simulating PET

	2.3 Built-in reconstruction algorithms
	2.4 Evaluation
	2.5 Experimenter

	3 System description
	3.1 Application framework
	3.1.1 Data generation phase
	3.1.2 Initialization and reconstruction phase
	3.1.3 Analysis phase

	3.2 DIG libraries
	3.3 Graphical user interfaces

	4 Example of use
	5 Availability and system requirements
	6 Future work
	Acknowledgements
	References


	IEEE_Radiography_12_15_acknowledging the grant
	IMpRT proposal_12-03
	Joint_workshop_poster_from_Ran_May_29_2013
	FKZM_Flyer_Protection_Methods_2013_new
	Poster
	Ran_Davidi_Germany
	Projection Methods in Feasibility, Superiorization and Optimization
	list of pers



